
Autoconversion rate bias in stratiform boundary

layer cloud parameterizations

R. Wood a,*, P.R. Field a, W.R. Cotton b

aThe Met Office, Bracknell, Berkshire, UK
bDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Received 23 July 2001; received in revised form 30 April 2002; accepted 3 June 2002

Abstract

Because of their large grid-box size, global climate models do not explicitly represent small-scale

processes occurring in cloud systems in the marine boundary layer. One such process, which is

thought to have an important climatological effect, is the production of warm rain. Parameterizations

of this process typically partition the liquid water into a cloud and a rain component. The rate of

conversion (autoconversion) of cloud to rainwater is expressed as a convex function of the local

cloud liquid water content. It is well known that the distribution of cloud liquid water content within

boundary layer cloud systems is spatially nonuniform. This would result in biased mean

autoconversion rates if no attempt is made to model subgrid variability. Three formulations are

examined, with increasing complexity, that can be used to model the distribution of liquid water

content within a model grid box and assess how well each predicts the mean autoconversion rate.

Assuming complete homogeneity of cloud liquid water within a model grid box results in large

biases. The use of cloud fraction to partition the grid box into cloudy and clear regions substantially

reduces the biases. The most significant reduction of the biases is achieved with a Gaussian

distribution of saturation excess within the grid box. With this formulation, which could be facilitated

using look-up tables, biases can be removed in a way consistent with the underlying distribution of

saturation excess. A simple parameterization is presented that corrects much of the bias using simple

algebraic expressions. It is demonstrated that to accurately calculate the mean autoconversion rate, an

accurate parameterization of the width of the saturation excess distribution is required.
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1. Introduction

Boundary layer cloud systems dominate the radiative balance in the subtropics (Slingo,

1990). These systems typically extend over millions of square kilometres of ocean and

have complex and self-similar structural and radiative properties (Lovejoy, 1982; Cahalan

and Snider, 1989; Los and Duynkerke, 1999). The production of precipitation in marine

boundary layer clouds in the subtropics is controlled almost exclusively by warm-rain

microphysical processes (condensation, coalescence, sedimentation). Much work has been

carried out over the last three decades into the microphysics of warm rain (e.g. see Beard

and Ochs, 1993 for a brief review). To parameterize rainfall in large-scale numerical

models, many schemes partition the total condensed water into very small, essentially non-

precipitating (cloud) droplets, and larger (rain) droplets which dominate the precipitation

rate. Rain is produced in these schemes through an autoconversion process (cloud droplets

collect each other to form raindrops) and an accretion process (raindrops falling through

the cloud collect smaller cloud droplets). The autoconversion process is a local one,

insofar as it depends upon local values of the droplet size distribution. It has been shown in

a number of studies that the autoconversion rate is very strongly dependent upon the

droplet size. For example, Khairoutdinov and Kogan (2000), henceforth KK, used a

number of large-eddy simulations with explicit bin microphysics to show that the

autoconversion rate is proportional to the droplet mean volume radius (rvol) raised to

the power of 5.67. Beheng (1994) also found a very high sensitivity of autoconversion to

droplet size. Therefore, for a given droplet concentration, the autoconversion is strongly

dependent upon the local cloud liquid water content. For the KK cases, the autoconversion

A( qC, Nd), when expressed as a function of local cloud liquid water content qC and cloud

droplet concentration Nd is fitted well using

AðqC;NdÞ ¼
BqR

Bt

� �
auto

¼ Kqa
CN

b
d ð1Þ

where K, a and b are constant (in the case of KK, a = 2.47, b =� 1.79). Both Tripoli and

Cotton (1980) and Beheng (1994) also present autoconversion formulations that take the

form of Eq. (1) with strong dependency of autoconversion rate upon local liquid water

content (a = 7/3 and a = 4.7, respectively). The KK scheme is intended for use as a bulk

microphysical parameterization in cloud resolving models but this does not necessarily

preclude its use in larger scale models. The LES model from which the KK parameter-

ization is derived has been validated against observations (Khairoutdinov and Kogan,

1999) in stratocumulus cloud. The parameterization itself has been validated against

observational data for a number of drizzling cases (Wood, 2000) and is found to behave

more favourably than the parameterizations of Kessler (1969), Tripoli and Cotton (1980)

and Beheng (1994). We therefore consider the KK parameterization to be the most suitable

bulk parameterization available for describing warm rain precipitation in large-scale

numerical models.

Because these formulas refer to local values of the parameters involved, the question

arises as to how to apply them for use in models with large grid boxes, which have either

no representation or only a limited representation of subgrid variability. The application of
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Jensen’s inequality to the problem (Larson et al., 2001) shows that if the grid-box mean

value of liquid water content is used to derive the autoconversion, that is, Abiased ¼ AðqC;
NdÞ , then Eq. (1) always results in an underprediction of the true (unbiased) grid-box

mean autoconversion rate Aunbiased ¼ AðqC;NdÞ , providing a>1. This result assumes a

constant droplet concentration within the grid box such that autoconversion variations

depend only upon cloud liquid water content variations. The resulting relative bias in the

mean autoconversion rate has been termed the grid box autoconversion bias, GACB, and

can be defined as

GACB ¼ Aunbiased � Abiased

Aunbiased

ð2Þ

where Aunbiased is the true (unbiased) mean autoconversion rate, and Abiased is the modelled

(biased) autoconversion rate, assuming only a limited representation of the subgrid

variability. We refer to this bias as the relative grid-box autoconversion bias. It is also

useful to represent the bias as the correction factor F that needs to be applied to the

modelled bias Abiased to obtain the unbiased autoconversion rate:

F ¼ Aunbiased

Abiased

¼ 1

1� GACB
: ð3Þ

For autoconversion rate formulations that, like Eq. (1), depend upon the product of

independent functions of qC and Nd, the value of GACB (and F) is independent of Nd,

provided Nd is constant within the grid box. This allows us to treat the autoconversion bias

due to the subgrid variability in liquid water content without the need for measurements of

droplet concentration. Of course, the absolute bias in the autoconversion rate does depend

upon Nd, but the relative bias GACB (and therefore F) does not. We do not examine

variability in Nd or the possible correlations between Nd and qC in this study, but note that

it would be an interesting avenue of research.

Pincus and Klein (2000), using hypothetical liquid water content subgrid distributions

representative of those in the marine boundary layer, show that biases in processes that

depend nonlinearly upon liquid water content can be as large as a factor of 2. Further, they

suggest that the unphysical and undesirable process of tuning GCM parameters so that top-

of-atmosphere radiation budgets are balanced, may be necessitated to an extent by the

nonaccounting for such biases in GCMs.

It should be noted that many GCMs now include either a prognostic or diagnostic cloud

fraction variable. The aim of this paper is, first, to describe three different model

formulations to describe liquid water content spatial variability within a large-scale model

grid box, each with increasing complexity. We then proceed to quantitatively examine the

magnitude of the autoconversion biases using observational data taken in stratiform marine

boundary layer clouds. We pay particular attention to the scale-dependent nature of these

biases. We quantitatively assess how increasing the complexity of the subgrid variability

reduces the biases and also suggest a simple parameterization that can successfully remove

much of the bias while avoiding the computationally expensive use of hypergeometric

functions or look-up tables that are required in the Gaussian formulation.
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2. Model formulations for subgrid variability and autoconversion biases

In this study, we consider three frameworks that can be used to describe the distribution

of liquid water content within a model grid box. In increasing order of complexity, these

are: (a) Homogeneous: the available liquid water content is distributed uniformly through

the entire grid box; (b) the grid box is partitioned into cloud and clear air fractions using a

cloud fraction and liquid water content is uniform within the cloudy fraction; (c) subgrid

variability in liquid water content is described using a Gaussian distribution of saturation

excess. Each of these distributions of liquid water content give different autoconversion

rates. We examine this in detail below. Functions GACB and F corresponding to each of

the frameworks will be subscripted accordingly.

2.1. Homogeneous model

The homogeneous model is the simplest approach for modelling autoconversion and

assumes that the liquid water content is distributed uniformly throughout the entire grid

box. Combination of Eqs. (1) and (2) gives the relative grid-box autoconversion bias of

this homogeneous model:

GACBhom ¼ AðqC;NdÞ � AðqC;NdÞ
AðqC;NdÞ

¼ 1� ðqCÞa

qa
C

: ð4Þ

2.2. Black-white model

This approach to representing the subgrid variability assumes that both the mean liquid

water content and cloud fraction are known. Then the distribution of cloud within a grid

box is treated as regions of clear air and regions of cloudy air with constant liquid water

content. Thus, there is no cloud internal inhomogeneity. We call this a black-white model

(after Mandelbrot, 1983). The total area of cloud in the grid box is the cloud fraction, C.

The in-cloud liquid water content qcloud is given by

qcloud ¼
qC

C
; ð5Þ

where qC is the grid-box mean liquid water content. This is predicted prognostically or

diagnostically in large-scale numerical models using a variety of cloud schemes (e.g.

Smith, 1990; Tiedtke, 1993; Rotstayn, 1997). The autoconversion bias GACBBW for the

black-white model can be calculated using Eqs. (1), (2), and (5):

GACBBW ¼ 1� ðqCÞa

Ca�1qa
C

: ð6Þ

The black-white autoconversion bias is related to the homogeneous bias (combining

Eqs. (4) and (6)), so that the correction factors for the black-white and homogeneous

formulations are related by FBW=Ca� 1Fhom.
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2.3. Gaussian distribution of saturation excess

The Gaussian framework describes subgrid variability of liquid water content com-

pletely using the assumption that the saturation excess is distributed using a Gaussian

distribution. Large eddy simulations from a number of cloud regimes (Cuijpers and

Bechtold, 1995), from well-mixed stratocumulus-topped to trade-wind cumulus boundary

layers, suggest that both cloud fraction C and grid-box mean liquid water content are well

modelled as a single function of the normalised saturation excess Q1:

Q1 ¼
aðqt � qsatðTlÞÞ

rs

ð7Þ

where qt is the grid-box mean total water content and qsat is the saturation specific

humidity. Variables in Eq. (7) are defined as

Tl ¼ T � LeqC=cp ð8Þ

s ¼ aqtV� bhlVþ c ð9Þ

a ¼ 1þ Le

cp

Bqsat

BT

� �
T¼T1

( )�1

ð10Þ

b ¼ a
T

h

Bqsat

BT

� �
T¼Tl

ð11Þ

c ¼ aðqt � qsatðTLÞÞ ð12Þ

where Le is the specific heat of vaporisation of water, qC is the liquid water content, cp is

the specific heat capacity of air at constant pressure, T is the temperature, and hl is the

liquid water potential temperature hl = h(1� LeqC/cp). Primes indicate deviations from the

mean of that quantity. The probability distribution of s is given by

PðsÞ ¼ 1

rs

ffiffiffiffiffiffi
2p

p exp � ðs� sÞ2

2r2
s

( )
: ð13Þ

The Gaussian model is validated using aircraft observations in Section 3. Bougeault

(1981) shows that for a Gaussian distribution of s, it is possible to write

C ¼ 1

2

�
1þ erf ðQ1=

ffiffiffi
2

p
Þ
�

ð14Þ

qC

rs

¼ CQ1 þ
expð�Q2

1=2Þffiffiffiffiffiffi
2p

p ð15Þ
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where erf is the error function. Defining I(a,z) as the ath Gaussian partial moment integral

given by

Iða; zÞ ¼
Z x¼l

x¼z

ðx� zÞaexp � x2

2

� �
dx; ð16Þ

the analytical form for I(a,z) can be written as

Iða; zÞ ¼ 2ða�1Þ=2exp � z2

2

� �
�

ffiffiffi
2

p
zGð1þ a=2ÞM 1þ a

2
;
3

2
;
z2

2

� �	

þ Gð½1þ a�=2ÞM 1þ a

2
;
1

2
;
z2

2

� �

ð17Þ

with M(a,b,z) being the 1F1-hypergeometric function (Abramowitz and Stegun, 1970) and

c is the gamma function

Mða; b; zÞ ¼ 1þ az

b
þ aðaþ 1Þz2

bðbþ 1Þ2! þ . . .þ aðaþ 1Þ . . . ðaþ n� 1Þzn
bðbþ 1Þ . . . ðbþ nþ 1Þn! þ . . . ð18Þ

Some mathematical manipulation using hypergeometric functions makes it possible to

write down an analytical form for the Gaussian mean autoconversion rate:

ĀGauss ¼ KN
b
d q

a
C ¼ KN

b
d

ra
sffiffiffiffiffiffi
2p

p Iða;�Q1Þ ð19Þ

and therefore the autoconversion bias:

GACBGauss ¼ 1� ra
s Iða;�Q1Þffiffiffiffiffiffi

2p
p

qa
C

: ð20Þ

For a given value of a, the ratio of the Gaussian and homogeneous (or black-white)

correction factors is a function only of the normalised saturation excess. This can be seen

by combining Eqs. (4), (15), and (20) to give

FGauss ¼ Fhom

ffiffiffiffiffiffi
2p

p

Iða;�Q1Þ
qC

rs

� �a

¼ Fhom

ffiffiffiffiffiffi
2p

p

Iða;�Q1Þ
CQ1 þ

expð�Q2
1=2Þffiffiffiffiffiffi

2p
p

� �a

: ð21Þ

In the next section, we turn to observational data sets to determine the potential

magnitude of the homogeneous biases. Through the relationships between Fhom, FBW, and

FGauss, we then generalise our findings to ascertain the ability of the more complex black-

white and Gaussian models to remove the biases.

3. Observations

Aircraft data used in this study are all taken from theMet. Office C-130 research aircraft

which flew a total of 21 flights during the First ISCCP Regional Experiment (FIRE, 8
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flights; Albrecht et al., 1988) and The Atlantic Stratocumulus Transition Experiment

(ASTEX, 13 flights; Albrecht et al., 1995). Details of the thermodynamic instrumentation

on the C-130 can be found in Rogers et al. (1995). Microphysical instrumentation is

described in Martin et al. (1995). All data presented here are taken from constant-altitude

runs in the boundary layer. Cloud fraction is calculated using the method described in

Wood and Field (2000).

3.1. Cloud fraction/saturation excess/liquid water content relationships

We first validate the LES results of Cuijpers and Bechtold (1995) using aircraft data

from FIRE and ASTEX. Fig. 1 shows the cloud fraction as a function of the Q1 for

stratocumulus-topped boundary layers. The data presented are taken from the FIRE and

ASTEX flights reported in Wood and Field (2000). Most runs are between 50 and 70 km

in length. Overplotted are the parameterizations of Cuijpers and Bechtold (1995) and the

curve obtained assuming a Gaussian distribution of s. Note that both parameterizations

agree fairly well with the observations. It is therefore concluded that, using the Gaussian

distribution of saturation excess, the cloud fraction can be obtained to reasonable accuracy

given grid-box mean temperature and total water content, provided the standard deviation

of the function s is known. We find that rs is, in the mean, larger by almost a factor of two

for ASTEX data than for FIRE data. We also find that rs scales with horizontal scale. To

examine this, we subdivide the aircraft runs into smaller sections (with lengths equal to 1/

2, 1/4, 1/8. . .of the original run length) and calculate rs for these subsections. We then bin

the data according to run length and calculate the mean value of rs for the data set. Fig.

1(b) shows the data set mean values of rs as a function of run length L. Error bars

represent the standard error in the mean at 95% confidence. Both FIRE and ASTEX

exhibit almost identical power law scaling, which can be written

hrsi ¼ asL
bs : ð22Þ

The fitted values for the exponent bs are 0.32F 0.02 (FIRE) and 0.33F 0.02 (ASTEX).

The values of as are 0.028F 0.001 and 0.050F 0.002 for FIRE and ASTEX, respectively.

The expected value of the exponent bs for a variable exhibiting Kolmogorov (‘‘� 5/3’’)

power scaling is 1/3. The observationally derived exponents are close to 1/3, suggesting

that s follows Kolmogorov-like type of scaling across scales from hundreds of metres to

tens of kilometres. The ratio of the standard deviation in ASTEX to that in FIRE is

approximately 1.5–1.8 at all scales. The increased power in ASTEX compared to FIRE is

a general finding supported by earlier observations (Davis et al., 1996). While the precise

causes are not yet entirely clear, there is some support (Wood and Taylor, 2001) for a

positive correlation between boundary layer depth and the variance of temperature and

humidity in the subtropical marine boundary layer. The boundary layer during ASTEX

was significantly deeper than that during FIRE. Decoupling of the boundary layer is found

more often in deeper boundary layers and this decoupling is likely to be associated with

the generation of mesoscale cellular features and an upscale turbulent cascade. This may

result in enhanced variance of the saturation excess at all scales. Large eddy simulations

(LES) of a large-domain dry convective boundary layer (Jonker et al., 1999) found that
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passive scalars can spontaneously develop variability on horizontal scales significantly

larger than the boundary layer depth. It is also possible that microphysical aspects

themselves could play a role in the development of the enhanced mesoscale variability

through evaporative cooling/moistening of the subcloud layer. Recent LES (Stevens et al.,
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submitted for publication) of a 20� 20 km cloudy domain show, however, that mesoscale

circulations can develop in a cloudy trade-wind boundary layer without precipitation. An

increase in computational power of the turbulence-resolving simulations, coupled with

improved observations (especially those able to sample large areas such as satellites and

radar), will give the opportunity of being able to focus on the mechanisms for mesoscale

variability (Rossow et al., 2002).

Fig. 1(c) shows observed liquid water content normalised with rs plotted against the

normalised saturation excess Q1. The dashed line represents the relationship obtained from

the assumption of Gaussian s. The observed liquid water contents are smaller than the

Gaussian ones for Q1 larger than around 0. The Gaussian model appears to underestimate

the liquid water contents at the smallest Q1. However, observational errors in qC are

typically larger when this parameter is small, and so the divergence from the Gaussian

model may be an artifact.

From Eqs. (14) and (15), it is clear that it is possible to express the cloud fraction solely

as a function of the ratio qC=rs. This relationship is shown (solid line) in Fig. 1(d) together

with observations from FIRE (circles) and ASTEX (triangles). The analytic form for the

relationship between cloud fraction and normalised liquid water content qC=rs, formed by

the combination of Eqs. (14) and (15), is complex and involves unwieldy hypergeometric

functions. However, it is well parameterized using the exponential form

C ¼ 1� exp �1:9
qC

rs

� �
ð23Þ

which is given in Fig. 1(d) by the dashed line.

3.2. GACBhom

Eqs. (4), (6) and (20) define the relative autoconversion biases for the three model

formulations described in the previous section. We begin by examination of the magnitude

of the biases of the homogeneous model and then examine how well the black-white and

Gaussian models can reduce these biases.

To estimate GACBhom for a particular value of a, we use Eq. (4). To ascertain the scale

dependency of GACBhom, we subdivide the aircraft runs into sub-runs with lengths of 1, 5,

10, 20, 30 and 60 km. All data used were taken at 4 Hz using a Johnson–Williams (J–W)

liquid water content sensor. The details of the sensor are found in Rogers et al. (1995). The

J–W probe has been shown (e.g. Davis et al., 1996) to have a reduced response to rapid

Fig. 1. (a) Cloud fraction from observations (all 60-km runs) plotted against normalised saturation excess Q1

defined in Eq. (7). Also shown are the proposed parameterization of Cuijpers and Bechtold (1995) (C +B 95,

dotted line) based upon LES results, and the relationship obtained if a Gaussian distribution of s is assumed

(dashed line). (b) Data set mean values of rs as a function of run length L. The dotted and dashed lines are power

law fits to the FIRE and ASTEX data, respectively. The solid line shows the (1/3) power law expected if s follows

a (� 5/3) power spectral scaling. (c) Mean liquid water content normalised with rs plotted against Q1 for FIRE

and ASTEX data. (d) Cloud fraction against mean liquid water content normalised with rs. Dashed line shows

Gaussian form which is well parameterized by a more simple exponential form (dashed line, Eq. (23)).
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changes in liquid water content at scales smaller than around 500 m (>0.2 Hz). At the

aircraft speed of 100 m s� 1, the 4-Hz sample rate gives 40 measurements for each

kilometre of aircraft track. A GACBhom value is calculated for each sub-run and so for a

single 60 km run, the number of subruns will be 2 (30 km), 3 (20 km), 6 (10 km), 12 (5

km) and 60 (1 km) subruns. We only expect the 1-km subruns to be affected by the

response time limitations of the J–W probe. The total number of 60-km (or greater) runs

used is 103 (FIRE) and 198 (ASTEX). Fig. 2 shows an example of GACBhom values,

calculated for the KK scheme (a = 2.47), as a function of the run-mean liquid water content

qC. Here, data from all 30-km ASTEX sub-runs are shown. The GACBhom values here

therefore represent the autoconversion bias that would result in a model with no

representation of subgrid variability if we assume that the KK scheme has the correct

dependency upon local liquid water content. The observed autoconversion bias is largest

when the run-mean liquid water content is small and decreases as the liquid water content

Fig. 2. Example of relationship between GACBhom and run-mean liquid water content qC for a= 2.47.
Observational data from runs of length 30 km from ASTEX are shown. It is clear that the autoconversion bias

decreases with increasing run-mean liquid water content and is fitted reasonably well using a relation of the form

GACBhom ¼ expð�G qCÞ (dashed line). The exponential is fitted by minimising chi-squared differences between

the observed and parameterized GACBhom.
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increases. The reason for this is that with small run-mean liquid water contents, the cloud

fraction is generally smaller: the homogeneous model is less representative of reality at

small cloud fractions.

We find that the observational GACBhom� qC data for each sub-run length L are fitted

well using an exponential relation of the form

GACBhom ¼ exp � qC

GðLÞ

� �
ð24Þ

where G(L) is a function of the run length. To calculate the best-fit value of G, we

minimised chi-square for the difference between the observed GACB and that in Eq.

(24). This also allowed us to calculate errors in the best-fit values of G. Currently used

parameterizations adopt values for a ranging from unity (e.g. Kessler, 1969, if

threshold is set to zero) to 4.7 (Beheng, 1994). We choose a range of values of a
to encompass the range of likely dependencies. The resulting best-fit values of G (for

Fig. 3. Best fit grid box autoconversion bias parameter G as a function of sub-run length L and autoconversion

exponent a for the FIRE (a, left) and ASTEX (b, right) data sets. Both FIRE and ASTEX data exhibit quite well-

defined power law scaling—the dashed line has a power law scaling of L1/3, apart from the data for a= 1.5. It is
uncertain why the power law scaling at a= 1.5 is different.
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values of a = 1.5, 2.0, 2.5, 3.0, 4.0, 5.0) are shown in Fig. 3 as a function of sub-run

length L for the FIRE (Fig. 3(a)) and ASTEX (Fig. 3(b)) data sets. There are two

important features:

(i) For a particular value of a, the function G(L) is larger for ASTEX than for FIRE data;

(ii) The value of G(L) increases with L for both FIRE and ASTEX data sets.

This indicates that for a particular run-mean liquid water content, the biases are greater

for ASTEX cloud systems than for FIRE ones, and is a result of there being generally

greater variability in the liquid water contents in cloud systems typical of ASTEX

boundary layers (Davis et al., 1996) caused by greater variability in the saturation excess

(Fig. 1(b)). We should also note that removing the 1-km subruns from the analysis did not

result in a significant difference in the fits, which suggests that the response time

Fig. 4. Values of the prefactor aG (Eq. (24)) against the autoconversion exponent a for FIRE (circles) and ASTEX

(triangles) data. There is no bias (hence aG = 0) when the local liquid water content and autoconversion rate are

linearly related (a= 1). The dotted and dashed lines represent straight line fits to the data passing through point

(a= 1; aG= 0). The ratio of the gradients of the ASTEX and FIRE fits is approximately 1.6.
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limitations of the J–W probe have little impact upon our results. The relationship can be

represented using a power law of the form

G ¼ aGL
bG ð25Þ

where aG and bG are constants for each data set and exponent a. Values of aG, derived
from the observations using chi-squared fitting, are shown in Fig. 4 for the FIRE and

ASTEX data sets. The relationship between aG and a is approximately linear for each data

set. The higher aG values for ASTEX are indicative of greater variability at all scales.

Whilst the values of aG are clearly different for the ASTEX and FIRE observations, the

power exponents bG are not significantly different at the 95% level (0.32F 0.03 for FIRE;

0.29F 0.02 for ASTEX). We found no systematic variation of bG with a for 2 < a < 5. It is
not known why the data for a = 1.5 differ from those at higher a, although it is noted that

the exponential form (Eq. (24)) does not provide as good a fit to the data as a approaches

unity.

4. Bias as a function of cloud fraction

4.1. C<1

Eq. (24) describes how the grid-box autoconversion bias changes with run-mean liquid

water content.

Given that the exponential form Eq. (23) represents a reasonable model for the

relationship between mean liquid water content and cloud fraction, we proceed by

rearranging Eq. (23) and substituting qC in Eq. (24) to give a parameterized bias, viz.

GACBhom;param ¼ ð1� CÞrsðLÞ=1:9GðLÞ ðC < 1Þ: ð26Þ

Thus, GACBhom,param is a function of cloud fraction C and the potentially scale-

dependent function rs(L)/G(L). Fig. 5 shows the values of G plotted against rs for three

values of a = 2.0 (triangles), 3.0 (circles), 5.0 (squares) for FIRE (filled symbols) and

ASTEX (open symbols). It is clear that G is well parameterized as a function of rs. For

each value of a, a single relationship exists between rs and G for FIRE and ASTEX. It is

therefore concluded that the difference in aG values between FIRE and ASTEX is a result

of differences in variability between the two data sets. Because there is, in general, more

variability in ASTEX boundary layers, the values of G (and therefore GACB) are

generally larger. The three lines are linear fits to the data for each value of a, which
may be represented by

GðLÞ ¼ f ðaÞrs ð27Þ

with f (a) a linear function of a as shown in the inset of Fig. 5, which is found to be given

by f (a) = 1.15(F 0.16)(a� 1). Estimated errors are given at the 2� r level.

The data suggest that it is possible to effectively correct the autoconversion bias if the

variance in the boundary layer thermodynamic variable s can be obtained. The boundary
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layer cloud schemes of Bechtold et al. (1995), Cuijpers and Bechtold (1995) and

Lenderink and Siebesma (2000) propose parameterizations of the variance in thermody-

namic parameters for use in large-scale numerical models. In these schemes, the variance

is diagnosed as a function of vertical gradients in mean thermodynamic quantities (specific

humidity and potential temperature) and turbulence length or velocity scales. This work is

a substantial improvement on schemes such as Smith (1990) whose distribution width is a

fixed function of temperature and pressure and a critical relative humidity parameter which

is typically a fixed function of height. An improvement to this scheme has been proposed

Fig. 5. Plot of rs against G from FIRE (filled symbols) and ASTEX (open symbols). Data are only shown for

a= 2.0 (triangles), 3.0 (circles) and 5.0 (squares). Lines are linear fits to data for each value of a. The gradient of
these fits f (a) is plotted as a function of a in the inset.
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by Cusack et al. (1999) who attempts to predict subgrid variability from resolved

information at larger scales. However, in boundary layer clouds, a considerable amount

of the variance on the mesoscale may be the result of turbulence upscaling and other non-

linear processes (e.g. Shao and Randall, 1996). These processes have yet to be considered

in parameterizations for large-scale numerical models.

Substituting Eq. (27) into (26) gives

GACBhom;param ¼ ð1� CÞ1=ð2:2ða�1ÞÞ ð28Þ

which leads to a parameterization of the relative autoconversion bias as a function only of

cloud fraction. For the Khairoutdinov and Kogan (2000) scheme (a = 2.47), we obtain the

relationship GACBhom,param=(1�C)0.31F 0.04.

As an alternative to proceeding to Eq. (28) via the exponential relationship Eq. (24), we

can use the FIRE and ASTEX data to find the best fit between C and GACBhom

GACBhom;param ¼ ð1� CÞc: ð29Þ

We use chi-squared fitting of GACBhom vs. C data to find the values of the exponent c
from the FIRE and ASTEX observations for different sub-run lengths L and find

remarkably little dependence of c upon L, as expected from Eq. (28). The mean values

of c calculated for the six length scales are 0.34F 0.02 (FIRE) and 0.35F 0.02 (ASTEX),

which are only slightly higher than the value predicted using Eq. (28) and within the

margin of error. We therefore conclude that, not only is there little or no scale dependence

in the parameterization of GACB as a function of cloud fraction, the same constant c
(approximately 0.34–0.35) is suitable for both FIRE and ASTEX. We carried out the same

analysis for different values of a and found that the relationship Eq. (28) fitted the

observed data well.

The median observationally derived values of the correction factors (a= 2.47) that

would need to be applied to the model autoconversion rates to give the observed rates, are

plotted as a function of cloud fraction in Fig. 6, for the three model formulations. Values

close to unity indicate that the model corrects the biases well. The parameterization based

upon Eq. (29) with c= 0.31 is also shown. An important point is that the data from FIRE

and ASTEX collapse onto almost the same curves. The homogeneous model autoconver-

sion rates are incorrect by a factor of two or greater when C < 0.8. The black-white model

(assuming the cloud fraction can be correctly predicted) reduces the biases compared with

the homogeneous model but does not completely remove them. Both the Gaussian model

and the parameterization reduce the biases to less than 30% for C > 0.2. For other values of

a > 1, the curves are qualitatively similar. The problem of parameterizing the bias at C = 1

is explored in Section 3.2.

4.2. C=1

The GACBhom parameterization Eq. (29), gives GACBhom = 0 (i.e. Fhom = 1) when

C = 1, which is clearly a shortcoming. It would be sensible not to use Eq. (29) when the

cloud fraction is approaching unity. We extracted all the observational data with C>0.95
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from the data sets and find that GACBhom in these cases scales well with qC=rs, that is,

the ratio of the mean liquid water content to the standard deviation of saturation excess.

This is what we would expect from Eq. (24) and the result that the values of G are

linearly related to rs (Fig. 5). We plot the correction factors F for the different

formulations against qC=rs in Fig. 7. In these cases, a = 2.47, although qualitatively

similar results are obtained for different exponents. For fully cloudy runs, FBW=Fhom. It

is clear that the biases for the homogeneous/black-white formulations are considerably

lower than those for the broken cloud runs. However, there remains a considerable

underprediction of the autoconversion rates which is quite well corrected using the

Gaussian formulation or the parameterization Eq. (24). The parameterized autoconver-

sion rates use Eq. (24) with G from observed rs and Eq. (27) (with respective constants

aG for FIRE and ASTEX).

Fig. 6. Median values of the multiplication correction factor F required to correct homogeneous (dash–dot),

black-white (dot) and Gaussian (solid) formulations of autoconversion rate for broken clouds, plotted as a

function of cloud fraction. Correction factors for the parameterization (Eq. (30)) are also shown (dashed). The

Gaussian model and the parameterization both result in autoconversion rates that are within 30% of those derived

using the observations for C>0.2, whereas the black-white model tends to underpredict autoconversion rates by

30–100%.
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4.3. Summary of suggested parameterization for GACB

We propose a method to correct the bias in autoconversion rates in large-scale

numerical models incurred by poor or no treatment of the subgrid variability in liquid

water content. In this study, we assume that locally, the autoconversion rate is proportional

to the liquid water content to some power a as in Eq. (1) and that the droplet concentration

is constant within the grid box. Insofar as this model is realistic, the autoconversion bias

for a model with a homogeneous formulation of liquid water content can be formulated

either in terms of mean liquid water or cloud fraction:

GACBhom ¼
ð1� CÞ1:0=ð2:2ða�1ÞÞ ðC < 1 onlyÞ

expð�qC=GðLÞÞ ðC ¼ 1Þ

8<
: ð30Þ

Fig. 7. Median values of the multiplication correction factor F for fully cloudy runs (C>0.95), plotted against

qC=rs . For qC=rs > 2, the Gaussian and parameterized (Eq. (30)) autoconversion rates are within 7% of the

observationally derived ones. Both formulations appear to somewhat overcorrect at lower values of qC=rs. Note

that the black-white and homogeneous formulations have the same biases when C = 1. However, there are only a

very few cases during FIRE and ASTEX where C>0.95 and qC=rs < 2, and so this may be a statistical artifact.
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where

GðLÞ ¼ 1:15ða � 1Þrs ð31Þ

with rs being a scale-dependent function which itself requires parameterization. We do not

address the issue of parameterizing rs here. The correction factor Fhom = 1/(1�GACBhom)

can then be calculated and applied to the biased autoconversion rate to remove the bias.

For numerical models that predict cloud fraction and then use the in-cloud liquid water

content qcloud calculated using Eq. (5) to derive the mean autoconversion rate (black-white

formulations), the correction factor FBW=Ca� 1Fhom would be applied to the black-white

grid-box mean autoconversion rate. Autoconversion rates calculated using the integral

over the full Gaussian pdf of saturation excess do not require significant additional

correction because the biases are quite effectively removed with this technique. However,

the Gaussian autoconversion rate calculation involves a numerical evaluation of the 1F1-

hypergeometric function (Eq. (19)). We find that third-order polynomial fits to the

logarithm of I(a, �Q1) can be used to generate a simple interpolating look-up table that

can be used to calculate the autoconversion rates for the Gaussian pdf with errors not

exceeding 1% (1.5 < a < 4.5; Q1>� 2).

Clearly the autoconversion bias parameterization for C < 1 does not depend upon the

particular cloud regime (i.e. the same equation works for FIRE and ASTEX), but for C = 1,

a regime-dependent form is required. However, it should be noted that the parameter-

ization of cloud fraction is both scale- and regime-dependent (as demonstrated in Section

3.1). As stated earlier, the differences in G(L) between FIRE and ASTEX result from

differences in rs between the two regimes. In addition, it is not clear how accurate the

parameterization will be for non-boundary layer cloud systems. Rather than presenting a

definitive and exhaustive parameterization of the autoconversion bias, this study is aimed

at (a) highlighting how the autoconversion bias is closely tied to the mean and standard

deviation of the distribution of s, and (b) providing a data set for possible testing of

parameterizations of subgrid variability.

5. Discussion and conclusions

Biases in autoconversion rate can arise in large-scale models when subgrid variability

in liquid water content is ignored. The use of aircraft observations from a number of flights

during two field programs has allowed us to estimate the magnitude of such biases. We

find that the biases increase with increasing run length (equivalent to model grid-box size),

and that for the same grid-box mean liquid water content and run length, the mean biases

are greater during ASTEX than during FIRE. However, because ASTEX clouds require a

higher mean liquid water content than FIRE clouds to achieve the same cloud fraction (due

to greater variability in ASTEX clouds), it is shown that the bias can be represented as a

single function of cloud fraction which is independent of (a) the location (FIRE, ASTEX)

and (b) the run length. It is suggested that this behaviour could be useful in attempting to

correct the biases. However, because the variance of saturation excess is a scale-dependent

variable, the cloud fraction is also a scale-dependent function of the mean saturation
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excess, and should be treated as such in large-scale numerical models. It is also shown how

the use of cloud fraction to represent, at least in part, some of the subgridscale variability,

removes quite effectively some of the bias. However, when the cloud fraction is unity, this

approach can lead to significant biases in autoconversion rate.

The question of how to apply the results presented here to develop better representation

of cloud variability is a pertinent one. The observations presented here provide a test-bed for

estimates of the autoconversion bias using probability distribution functions to represent the

subgrid variability. Future parameterizations which predict subgrid variability from large-

scale forcings should be able reproduce the observed differences in grid-box autoconversion

bias between the mid-Atlantic (ASTEX) stratocumulus region and the Californian (FIRE)

region. Cusack et al. (1999) used model simulations using a relatively small grid-box size to

parameterize subgrid variability at larger scales. They found that the spectral power between

horizontal scales of 150 and 400 km varied considerably with location. This novel approach

could in future be built upon using nested models that span a wider range of scales from

cloud resolving model to climate model grid-box sizes to achieve greater understanding of

the physical causes for inhomogeneity. Detailed satellite measurements using a range of

sensor resolutions and domain sizes spanning scales from metres to thousands of kilometres

have shown that robust scaling relationships exist in nature. Understanding the physical

basis for these relationships is a primary goal of future research.

In addition to variability in liquid water content, there is likely to be subgrid variability in

droplet concentration due to mesoscale variability in updraught speed and CCN concen-

tration. In this study, we have considered that biases in autoconversion result only from

heterogeneity in liquid water content. There are physical reasons why droplet concentration

may be correlated with liquid water content (or liquid water path) that may result in quite

complex biases in autoconversion. In the future, it also may be possible to represent droplet

spectra within a grid box using a moment scheme such as that presented in Feingold et al.

(1998). With schemes such as this, the concepts of autoconversion and accretion are

addressed in a more physically realistic manner than by simply partitioning into cloud and

rainwater. Nevertheless, for large grid-box sizes, neglect of subgrid variability will result in

biases; parameterizing the subgrid variability will be a challenge.
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