Balance Winds

Geostrophic Balance

Gradient Wind

Cyclostrophic Wind Balance

Balance with Friction / Ekman Balance



The equation of motion can be written as:
d—V:—lvp—zéx\?—hé
dt p

where Q is the angular velocity of the earth (positive pointing
upward from the north pole)

Q) =27/ day corresponding to the rotation rate of the earth
20 x V is called the Coriolis term
F represents the effects of friction

G is the gravitational vector (G = —ng)



i J k ¢ Equator
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u \% W
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S =2QxV =(fv— fw)f — fuj + fuk
where f = 2Qcosd and f = 2Qsind



The horizontal components of the equation of motion can

therefore be written as:

du 10p A

—=———">+fv—fw—-Fu
dt p OX
g:—l@—fu—FV

dt p Oy

where f = 2|Q[sin¢ and f =2|Q|cos¢d and ¢ is the latitude

For the case of:
* no friction (Fu=Fv =0)
* no acceleration (du/dt = dv/dt = 0)

* lu], |[v| >> w which is typical on the synoptic scale

then



0= L op fu

—> u=- lap
p Oy pf oy e

O:—l@+fv — V= 18p
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where u, and v, are the geostrophic wind components defined by

these relations. The geostrophic wind relation can be written 1n vector
notation as:

V kaV P

pf

where V _ 1s the horizontal gradient operator (1 i + EQ)

ox Oy



V =kx v
pf

This can be checked using the definition of the
vector cross product :




V kaV P

pf

e The geostrophic wind 1s the balance between the pressure
gradient force and the Coriolis force

o V must be horizontal and perpendicular to V _p (the
wind direction is parallel to the isobars)

° V is directed such that the high pressureis to the right in the
northern hemisphere and to the left in the southern hemisphere

e As p1s nearly constant at a given height, Vg 1s almost linearly
proportional to the pressure gradient (the larger V p the larger V, )

e A given value of V _p will result in stronger V at lower latitudes
because f — 0 at low latitudes

e Geostrophic balance is rarely achieved at low latitudes

e [t 1s assumed that the flow is straight for the geostrophic wind
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The geostrophic wind balance assumes that the wind
flow 1s straight

A more general form of a balanced wind can be
obtained 1f accelerations due to curvature in the height
or pressure fields are taken into account (remember
that changes 1n the direction of the velocity vector
with time result in acceleration)

The gradient wind like the geostrophic wind 1s
frictionless, but 1t 1s not unaccelerated



The equation of motion can be written as :

N 204V _F+G
dt Yo,

As we now have acceleration due to the effects of curvature,

—

V. : L
the term & is not zero as it was for the geostrophic wind.

Following Pielke's notes we can obtain an expression for the

for the acceleration due to curvature:

(=r)

dv Ngr
dt R

where the subscript gr stands for gradient wind
r is the position vector

R is the magnitude of t

The right hand side of the above equation 1s simply the centrifugal force



dV: gr (—f) N dll—i'_'_dV—j':ugr Vg (—f) d—u:()
dt . dt t . dt
dv
R
dt
du Vv, | North
du _
dt
dv _u,
dt R,

The direction of the unit vector — T at points A, B, C and D are

denoted by the appropriate Cartesian unit vector



* To mnvestigate the balanced wind which develops when the
acceleration due to curvature is included along with the Coriolis
force and the pressure gradient force, we will focus on point A.
There 1s no loss of generality as the coordinate system can always
be rotated so that a point of interest corresponds to location A.

* At point A, u, = 0, while v, > 0 for a low and v, <0 for a high
pressure in the northern hemisphere. Substituting into:




NOWas_—I@=—1'\/g we get

0 OX

_ \2
L=—fv, + fv, = (v, —V,)

T

* The velocity v, which solves this relation is called the
GRADIENT WIND

Vor _fy 4+ fy «——| Coriolis force

Centrifugal force

Pressure gradient force

* The gradient wind balance 1s a three-way balance between the Coriolis
force, the centrifugal force and the horizontal pressure gradient force




Gradient Balance




O = v, + fvy, = F (v, —V,)
9 gr gr 9
i

Rearranging this equation :
Vgr + Ryv,, =R fv, =0

Using the quadratic equation formula to solve for v, :

Vg = (= Ry £,/ 2R2 +4R; fv,)/2

* For a cyclone in the northern hemisphere, v, > 0 at A so that the radical
1s always real => no limit to the magnitude of the gradient wind

* For an anticyclone in the northern hemisphere, v, <0 at A so that

PR> > 4R fv, => v, <{R/4 for the radical to be real => there is a
constraint on the magnitude of the pressure gradient force in anticyclones
that does not exist for low pressures. This is the reason that lows on
synoptic weather maps often have tight gradients while highs don’t.



V; +fR v, —R.fv, =0 can be rewritten as :

2
A%

gr
+V =V
gr g
R.f

* v, <V, foracycloneasv,>0at A
*[vy,| > [v,| for an anticyclone as v, <0 at A

 These inequalities show that for the same pressure gradient (as represented by
the geostrophic wind), the gradient balanced wind is stronger around a high
than a low

 The gradient winds associated with a cyclone are SUBGEOSTROPHIC
because the centrifugal force helps to balance the acceleration due to the
pressure gradient force, therefore the Coriolis terms fv,, and v, don’t need to be
as large

*The winds associated with an anticyclone are SUPERGEOSTROPHIC
because a large Coriolis acceleration (and hence large value of v,,) is needed to
balance the sum of the acceleration due to the pressure gradient force and the
centrifugal force



Supergeostrophic

Geostrophic

CF, > CF, > CF,

VgrA > VgrB > Vng



* When Coriolis force 1s neglected in the
gradient wind balance we obtain a balance
between the centrifugal force and the
pressure gradient force — this balance 1s
called the cyclostrophic wind balance

» Used to estimate wind speeds 1in small-scale
vortices such as tornadoes and dust devils



—Vv: 1 6p
We had —* = ———+ fv, for the gradient wind

R; P OX

For cyclostrophic wind balance :

vy __10p

R; O OX

The cyclostrophic wind can be obtained from:

Vy== &_p
\/p OX

A tornado with a radius of 0.5 km, a pressure gradient of
100 mb km™ and an air density of 1.25 kg m™ would have a

cyclostrophic wind of 63 ms”



* To evaluate the impact of friction on the resultant wind
balance, we can retain the friction terms in our horizontal
equations of motion

Setting
F =C,u’ and F, =C_V’

we obtain a more general form of the gradient wind balance:

2
Y, Ve = IV, +CLV¢

T

where V.. 1s in general at some angle to the gradient wind and the subscript F indicates that the
effects of friction have been included.C is a drag coefficient whichis a function of height

above the ground and the thermodynamic stability



* Friction decelerates the flow and this turns the wind towards low
pressure => results in low-level divergence out of anticyclones and low-
level convergence into cyclones

 The frictional acceleration acts directly opposite to the direction of the
wind

 The Coriolis acceleration 1s perpendicular to the wind direction

 The centrifugal force is also perpendicular to the instantaneous wind
direction

PG.



-~

30
-!
i

RN
¢ .

%
3
5 o
Y
S " '\.\_-\.\I
.
W Teo
- -

200 ME HEIGHTS ¢ SFEEDS (KETS)
09723503 00z

College of DuPage HWeather [




Surche data plot for 147 23 SEP D3

3 """ = '1'| 2] Y T
e WS 25 »
] | B Ty 71
=37 7 57 iu. e o ST o 3,
e . . -

B 13
3482 37 ;" 4

2??
i | 36
s

B4 T
6as . 21658 R
a?gsn AL i
58,55 mojj ?% %é 1

L

EA}? 89 15k =0
7,83 B 185
078 o ?{) i ?1 . 59 1% - EEII?E
EZ
o 193 ?2 184
o 55 52z sﬁ ?5 [
g3 ?2 i
E3 174 g 1
md T
7T 1?5 9 27
E&%‘W *35 70 %ﬁ
% T &

e oo
i
Frents ::1t 12




Balance Wind | Assumptions | Balance
Geostrophic Neglect friction | Pressure gradient I
flow and acceleration | force and Coriolis V, =kx —fVZp
due to curvature | force P
Gradient wind | Neglect friction | Pressure gradient ,
force, Coriolis —V
L =—fv, + fv
force and R g gr
. T
centrifugal force
Cyclostrophic | Neglect friction | Pressure gradient 5 15
flow and Coriolis force and Vg __1OP
force centrifugal force R; P OX
Balance with All forces now | Pressure gradient
Friction incl f 1o0li 2
uded orce, COI’IO. 1S Vi VAR VIRV
force, centrifugal R ’

force and friction




Continuity Equation

* The equation of continuity
1s given by:

le
p Dt

-V.-¥

* Physical interpretation: if a
volume having dimensions
Ax, Ay and A z experiences
convergence, then the
material volume decreases.
However, since the amount
of mass in a material
volume remains constant,
the density must increase

AxAyAz
Decreases

P Increases

Source: Bluestein, 1992



 The continuity equation can also be expressed as:

op -
¥ V.oV
ot P

This 1s the flux form of the continuity equation — says that mass in
a volume can change locally only through flux convergence or
divergence

* [f we assume that the atmosphere is incompressible then the
density of the parcel does not change:




—_

V-v=0
* This means that for an incompressible atmosphere the atmosphere 1s

three-dimensionally nondivergent

» The incompressible assumption implies that convergence in one or two
directions must be balanced by divergence in the other direction(s) and
that mass 1s conserved.

 The incompressible assumption 1s useful in helping to understand
atmospheric systems that are not strongly dependant on compressibility.
This approximation fails in strong thunderstorm updrafts, tornadoes etc

 For deep convection where the impacts of compressibility are important
in the vertical, the following continuity equation 1s used:

V-[p(z)v]=0

where the base-state density p(z) is a function of height only



» Assume that the atmosphere behaves as an incompressible fluid:

L}

Horizontal convergence =>  Vertical stretching

W -

Horizontal divergence => Vertical shrinking




We showed earlier that the continuity equation could be written

iélﬂux form as :

P _

¥ __v.ov

4 19 y 0 19 o)

_. o _ _[dpuw) d(pv)  O(pwW)
ot OX oy /4

If we assume that the atmosphere 1s incompressible :

8u8v8w
8X(9y82

=0

which can be written as :

8u8v oW

8X8y_g

Horlzontal Divergence




Vertical velocity is constrained to be zero at the ground and at the
tropopause

If w 1s nonzero, its sign is often the same at all levels in a column of the
troposphere => the sign of Ow/0z must reverse at some level. At this
level:

w _,
0z
which from the continuity equation implies
ou ov

—+—=div,V, =0
ox Oy

This level is therefore called the level of nondivergence. It is typically
found near 550-600mb.

Rising motion above a level surface must be accompanied by
convergence below and compensating divergence aloft.

Similarly sinking motion must be accompanied by divergence below and
convergence aloft



@ > O @ < O
0z . /4
div. V. <0 Convergénce Diverpgnce div, V. >0
M _g M _o
o7 s -— ondivergence ~=3-- «— 5,
div,V, = div, V. =
? <0 ? >0
V4 y4
I Diverge ergence .
div. V. >0 AN div. V., <0
y, w
S - 2
W

Sinking Motion

Rising Motion




Pressure Tendency Equation

The pressure at any height (z) is given by the weight of the air column aboveit :
0 o0 p
-[dp=g[ pdz=[dp=p
P z 0
The pressure tendency at z s :
op _ 0| | (op
—=— Z|=0g|—0dz
A
But we saw earlier that :

9p _ _O(pu) o(pv) o(pw) _ .o (V) o(pw)
ot X oy oz naTH oz

where V,, is the horizontal wind vector and div,, is the horizontal divergence



op

ot

0 . . o0 a
= _gIdIVH (PVy)dz - gj&(PW)dZ
Z O Z

e
For gja(pw)dz :V‘{‘; — pw‘z

z

.@|
Sl

— —gT div, (pVH)dz + gpw‘z

At the surface: (pw) _, =0
op

=>| —
ot

=—g [div,(pV, )dz

z=0
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(b)

Tropopause
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Using pressure coordinates and assuming an incompressible atmosphere the
continuity equation can be written as:

% =-V.V where o = %lz and the divergence refers to horizontal divergence
Integrating between pressure levels p, and p, :

P; b2

Ja—mdp = —jV.Vdp

b1 ap pi

A good approximation to the left hand side is:

dw = (dw/0p)dp since the other partial derivatives are typically
much smaller than ow/0p

The integral on the right hand side integrates to :

-V.V(p, - p,)

providing the correct vertical average divergence is selected. In the

case of constant V.V or linearly varying V.V, the value of V.V in the

middle of the interval is equal to the average divergence V.V



So we now have:

w, —m, =—-VV(p,— p,) | where », occurs at p, and @, at p,

Example : consider the layer between 1000 and 700mb then
@, = 0y, and p, =700 mb

@, = @,y and p, =1000 mb

For our purposes the divergence at 850 mb can be assumed equal

to the average divergence in the layer between 1000 and 700 mb.
Another typical assumption is that the vertical motion at 1000 mb

1s much less than that at 700mb and is thus neglected. With these

assumptions we get the following :

190 = V V5o AP where Ap =p, — p, =300mb

Therefore convergence at 850mb (VV,., < 0) = @.,, < 0 = rising motion

divergence at 850mb (VV,,, > 0) = @,,, > 0 = sinking motion




* Winds around high
pressure systems diverge.
Conservation of air mass
requires subsidence over the
high to replace the
horizontally diverging air

 Similarly horizontally
converging air around low
pressure systems are
associated with upward
motion

Source: Stull, 2000
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« Baroclinity (or Baroclinicity): The state of stratification in
a fluid 1n which surfaces of constant pressure (isobaric)
intersect surfaces of constant density (isoteric)

« Barotropy: The state of a fluid 1n which surfaces of
constant density (or temperature) are coincident with
surfaces of constant pressure; it is the state of zero
baroclinity

* When there are temperature variations on an 1sobaric
surface the atmosphere 1s said to be baroclinic. If there are
no temperature variations the atmosphere 1s said to be
barotropic



Barotropic Atmosphere | Baroclinic Atmosphere

p and p surfaces coincide | p and p surfaces intersect

p and T surfaces coincide |p and T surfaces intersect

p and O surfaces coincide |p and 0 surfaces intersect

No geostrophic wind Geostrophic wind shear
shear
No large-scale w Large-scale w

Examples of baroclinic systems:
* Cold fronts
» Sea breezes

e Mountain slope flows



Pressure, mbar
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Barotropic Atmosphere
* eg: sea-breeze during early morning

* Pressure and density isolines are
parallel / coincident

* No circulation

Baroclinic Atmosphere
* eg: sea-breeze in the afternoon

« Air over the land heats up more rapidly
than that over water

* Pressure and density isolines intersect
e Circulation develops

* The lighter fluid over land “feels” the
same pressure gradient force as that over
the ocean — the lighter fluid will tend to
rise more rapidly resulting in a net
counterclockwise circulation

P,>P,>.>P. and p,>p,>...>p;
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Vorticity

Vorticity: A vector measure of the rotation in a fluid, and 1s
defined mathematically as the curl of the velocity:

—

=V x\V

The vorticity of a solid rotation 1s twice the angular velocity
vector

In meteorology, vorticity usually refers to the vertical
component of the vorticity



Components of Vorticity

ik
H=VxV= 0 9 9
OX Oy 0z
jlu v w
OW OV |- (8u 8Wj—.’ ov Oou |-
= — 1+ — ]+ —— |k
oy 0z) \0z 0x ox Oy
=£1+Mnj+Ck

» The components of the vorticity & (x1), n (eta) and C (zeta) are
measures of the spin about the x, y and z axes.



« Relative vorticity (or local vorticity) (o):

— the vorticity as measured 1n a system of coordinates fixed
on the earth's surface

— curl of the relative velocity
=V xV

* Absolute vorticity (o,)

— the vorticity of a fluid particle determined with respect to
an absolute coordinate system (takes into account the
rotation of the earth)

— curl of the absolute velocity

w, =V xV,




» The vertical component of the absolute vorticity
vector (as defined above) 1s given by the sum of the
vertical component of the vorticity with respect to
the earth (the relative vorticity) and the vorticity due
to the rotation of the earth (equal to the Coriolis
parameter) f:

Ca=6+ 1T

* The difference between absolute and relative
vorticity 1s therefore simply the planetary vorticity
(f=2Q sin @):

ov ou oV ou

A i f
gax oy o0 = OX Oy




* Regions of large positive (negative) C tend
to develop 1n association with cyclonic
storms 1n the Northern (Southern)
hemisphere — the distribution of relative
vorticity 1s therefore an excellent diagnostic
tool for weather analysis

* Absolute vorticity tends to be conserved
following the motion at midtropospheric
levels — forms the basis to simple dynamical
forecast schemes



We are now going to use the equations of motion to derive an

equation for the time rate of change of the vertical component of
vorticity:

The vertical component of vorticity 1s given by :

The horizontal equations of motion are given by :

Du _ou,  ou,  Ou o __1Op .k (1
Dt ot ox oy 0z p OX

DV _ OV VD X LR e g
Dt ot ox oy oz poy

To get the vertical component we subtract the partial derivative of (1)
with respect to y from the partial derivative of (2) with respect to x:



/
9 @+u@+V@+W@:—l@—fu+F —
8X>8t 0z poy ’
9 @-I-u@-l-V@—I—W@:—l@-l-fV-I-FX
oy \ ot

|l
\%

\ ox 0y oz péx
O(ov ou) ~ofov éu) d(év ou) dfov éu
—-— |+u —— |+vV —— |+W -
at(ax @Yj 8X(8X ﬁyj GY[GX 8yj 52((% 0yj
8u£8v_5uj+8v(8V_8uj+8wév_8w8u+f£8u+8vj
ox\ox 0dy) oy\ox Oy) oxoz dyoz \Ox Oy

Jof _1(dpdp_opdp) o OF _,
Oy p'\oxdy oOyox) ox Oy
o, o¢c o e of D

=> 24U 24V _2+W_4V—=—oA({+f)=
ot ox oy oz &y Dt

_(C+f{8u+ﬁvj_(8wﬁv_ﬁwﬁuj+ lz(apﬁp_('?p@pj_l_(@Fy_@ij
ox Oy) \oxoz dyoz) p'\oxdy odyéx) (ox oy
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The vorticity equation 1s therefore given by:

Tilting/ Solenoidal
Diveigence Twistting Balglinic Fﬂcﬁion ﬁ
oF
2(Q+f)=-(§+f  Ov| [owov_owa), 12 PP_Ppd| (& K
t x oy) \oxkadz oyoz) pl\okoy oyox) \ox Oy
where we used: ov  fu
-= ox Oy
and the fact that the Coriolis parameter depends only on y so that:
Df  oOf
—  =\V—
Dt oy

The vorticity equation states that the rate of change of the absolute
vorticity following the motion 1s given by the sum of the
divergence term, the tilting or twisting term, the solenoidal term
and the friction term




Ignoring the tilting, baroclinic and frictional terms
we can write the vorticity equation as:

D o ou Ov)_ —
)=o) 20 2 (e v,
ou ov

where diVH\qfH 1s taken to mean — + —
ox 0Oy

* When div,V, <0 we have convergent flow => absolute
vorticity increasing

* When div, V; >0 we have divergent flow => absolute
vorticity decreasing

* Analogous to spinning ice skater pulling their arms in



Before

Convergence After

(a)
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Examining the first term:
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The baroclinic term can be written in terms of temperature :

op O

_1(apap_apap]:_ 1 (51)8(pj_
p’lox oy Oy ox (I&@RT
Rt
op _OT | op T
T _p— op ol
:_RTZ dp| Oy pﬁy _0p T@X p@x
p® | ox T? oy T?
_ R {3 dpdp), 8p8T _OpoT
p’l (Ox0y OxO0y 8y8x Ox Oy
op oT  dp oT

5l

ox dy | By Ox

= EﬁHp X ﬁHT
p

J

0y OX

)
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Air moving through a wave pattern can acquire changing vorticity due to

baroclinic stratification

Isotherms are of longer
wavelength than the pressure
wave — air moving through the
wave will acquire cyclonic
vorticity as it approaches the
trough and intensification may be
expected

Isothermal wave is of shorter
wavelength and the air moving
into the trough will be acquiring
increasing anticyclonic vorticity
so that the trough may be
expected to become less
pronounced

Vup X VyT

—Vup X YV, T
A

()/—\P-AP

Source: Dutton



Baroclinicity




Relative vorticity can also be expressed in the so-called natural
coordinates which are defined with respect to the parcel:

v u_V dV

“= dy R, én

Rotational Vorticity: V/R; represents the angular velocity of solid
rotation of an air parcel about a vertical axis with radius of curvature
Ry

Shear Vorticity: the lateral shear term, -0V/on, represents the
effective angular velocity of an air parcel produced by distortion due
to horizontal velocity differences at 1ts boundaries



Rotational Vorticity Ry

oV
Shear Vorticity T an
—_— 4
: n direction
—> ]
— |

Examples of rotational and shear cyclonic vorticity illustrated in natural
coordinates.



* As wind speeds 1n the westerlies in the midlatitudes
usually increase monotonically with height in the
troposphere, the wind, and therefore the vorticity
fields at the upper levels exert a major control on the
synoptic vertical motion field as shown by

divyV=-0w/0z

 We saw previously that to the extent that a parcel
trajectory 1s in gradient wind balance the parcel will
decelerate as 1t moves from a ridge crest into the
trough, and accelerate as 1t moves from the trough to
the ridge

* As divV=-0w/0z 1s generally a good approximation
in the earth’s troposphere, the vertical velocities
seen 1n the next slide occur to conserve mass



e o (a)
A ridge axis

ridge oxis |

B
trough axis

air becomes mmmly] air becomes increasingly
more cyclomc(?'-m) more anticyclonic (9%-<o);
" therefore at this level therefore of this level

div, V<0 div,¥>0

(b)

V77741 7477447747774 77 74 774474747714 77{ 17747774777 /77 47774
I (generation of vorticity)! (dissipation of vorticity)
div,, V<O0; converwncJ dan ¥>0; dwetqmce'

LEVEL OF
— _l_ + —T— ‘ _L — —— — __NONDIVERGENCE
l (dissipation of vorticity) ’(qenerohon of vomaty}
div,, V>0, divergence

div,, V<O;convergence

|
Vv LILLL LSS 7 AT T 7T 77 7777777 7777 777 77 7777777777777
A B C

Schematic illustration of the inferred change of vorticity and resultant
motion (b) as an air parcel in gradient wind balance moves through a
constant pressure gradient wind field in the upper troposphere given in (a).
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Some Issues to Look At

Mid-Term Exam: Thursday October 16
12:10-2:10
Greek letters names

¢ (x1), n (eta) and C (zeta)
Corrections made to zeta where need be

Continuity equation interpretation
Simple vorticity plots
Pressure coordinates



6u 8V @
ox 6y 0z

» The continuity equation does NOT automatically imply that when the
LHS > 0 (divergence) that this is associated with sinking motion (and
visa versa for LHS < 0 and rising motion)

* To understand the relationship we need to know the profile of w — this
includes the sign of w and whether w 1s increasing or decreasing with
height

* Assumptions for determining relationship between conv/div and
rising/sinking air:

— w =0 at the surface
— w = 0 at the tropopause

— w is the same sign in a column of air

* Note: we could have w of different signs in the column — this would give us
more than one level of nondivergence which is possible. However, on a
synoptic scale, the assumption that w is of the same sign in a column is
reasonable
* Knowledge of the w profile and its change with height then determines
the level of nondivergence, and the relationship between w and

divergence/convergence



@ > O @ < O
0z . /4
div. V. <0 Convergénce Diverpgnce div, V. >0
M _g M _o
o7 s -— ondivergence ~=3-- «— 5,
div,V, = div, V. =
? <0 ? >0
V4 y4
I Diverge ergence .
div. V. >0 AN div. V., <0
y, w
S - 2
W

Sinking Motion

Rising Motion




Vertical Vorticity Plots

C - ov  Jdu
0x 0y

Options

DY S 0and <o
04 oy
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* Options 1 and 2 are
ROTATIONAL motion

 Options 3 and 4 are called
STRAINING motion
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Primitive Equations in Isobaric Coordinates

1) Material Derivative

e Cartesian Coordinates: x, y, z, t

D 0 o o0 0
—=—+u
Dt &t ox oy oz



2) Pressure Gradient Term

* Any scalar ¢ can be represented in either coordinate system and
the value of ¢ at a point (x,y,z) 1s the value of ¢ in the pressure
coordinate system at the point (X,y,p) where z = z(x,y,p.,t)

O(X,y,p,t) = (X, ¥,2(X,y,p, 1), 1)

Using the chain rule:

2] :6¢6X+8¢8y+8(|)62+6(|)8t
OX OXO0x O0yOXx 0z0OX Otox

y.p,t

o0 _0p 090z
ox|,,, OX|,,, 0zZO0OX|,,,
Similarly

oo _0b 00z
oyl . Oyl , ~0z0x

X,p,t



o) _06) L 090z
oX|,,, OX|,,, 0z0X|,,,
op _oo L 000z
ay X,p,t ay X,Z,t az aX X,p,t

If we assume that ¢ is pressure :

op

0z

—PEg

% _o% ,opoz
ox|,,. OX|,,, 0z0X|,,,
B 8p‘ _ op 0z
8XL 0z ax‘p
Assuming hydrostatic balance:
_OP _ (o)
ox. (=pe)— p
Using ®@ = gz where @ is the geopotential
_Lop| __o®
p OX| Ox ‘p
Similarly
15 _ o0

poy|, Oy

Now we assumed hydrostatic balance :

oz -1

o pg

oD
or —=-a

ap

Therefore the frictionless equations of motion

in 1sobaric coordinates can be written as :

Du oOu
=—+

ou Ou ou 00
u V—+o—-=

+ ® —+1fv

Dt ot OX oy op Ox
Dv ov ov ov ov oD

=—+u—+V—+o—=——-—fu
Dt ot ox 0Oy op oy
oD
—=—Q
op



3) Continuity Equation

It can be shown (see Holton pg 59-60) that the continuity
equation 1n 1sobaric coordinates 1s given by:

8u8v800
8X8y(9p

It should be noted that the continuity equation does not have
any reference to the density field, nor does it involve any
time derivatives. This 1s one of the main advantages for
using the 1sobaric coordinate system.

=0




The frictionless primitive equations in isobaric coordinates are therefore given by :

agtH +V, -V ¥, + o Wy =-V ®—fkxV,
o _
ap

(V-¥),=0

—Q

where the subscript p refers to 1sobaric coordinates, v,, refers to the horizontal

velocity vector,and V= I(ij + 3 g here
oXx ), oy ),



The Omega Equation

* It 1s useful to combine the vorticity equation
and the first law of thermodynamics into a
single equation that describes the vertical
motion above the surface associated with
extratropical cyclones and other types of
synoptic weather features

* This equation, which we will now derive, 1s
called the OMEGA equation



« Step 1: Derive vorticity equation on a constant pressure surface:

— Proceed as we did before to form the vorticity equation by subtracting 0/0y of
the u momentum equation in isobaric coordinates from 0/0x of the v momentum
equation in isobaric coordinates

— Neglecting the tilting and friction terms
— We get:

agp \/ _
Ce V)= .

where G, is the relative vorticity on a constant pressure surface,

VvV, = Ti + Ei and ou + ov has been replaced by - oo (2)
Ox Ox

« Step 2: Form a geostrophic vorticity:
— Using the geostrophic wind relation:

g

. g-
v =2kxV z
f ’ (3)

we can obtain the geostrophic vorticity:

p

Vxv, =%sz=§g (4)



* From (4) the vorticity can be estimated from the curvature of the height
contours on a constant pressure analysis

* Substituting (4) into (1), where ; is set equal to , gives:

0g= - o0
=V'z+v-V ((, +f +f 5
- e+ )=6+ ) (5)
» Step 3: Include thermodynamics using the First Law of Thermodynamics
T *T T T T o p

R

Now 0 = T(&]CP => InO=InT + 5(ln p, —Inp)
C

P :
> Sgo=Sear—Rgp o 99_S g9
0 T p T ©
Q_ dln©
T P dt (6)

where Q represents changes in sensible heat of a parcel (diabatic effects). Q can
include explicit synoptic-scale phase changes of water as represented by —Ldw, as
well as radiative flux divergence and subsynoptic-scale phase changes of water due
to cumulus clouds



« Equation (6) can be written as:

¢ c'i?lnﬁ+ 8ln9+ aan+ Oln b
U
P o or ' dy " op

|-

Since using the gas law:

Ry/Cp
0 =T [1000/p]"/% = 22 (HJRQ)
R, \ p

alnéh81na_81n0_81na_81n6’_81na
0r  or Oy By At Ot

then

on a constant pressure surface and

C 8a+ 8a+v8a+ Oln 6 aQ
- 1U— S = —(/.
"ot Yer ey Y ap | T




From the hydrostatic relation in a pressure coordinate framework (i.c., gz =

—a/g):

_9
95,

so that the above can also be written as:

o 1= 2 (22) 2w (,22) 200 (,97) £ wafll) 2
1 Ta\Top) " ar Uap) T Ve \ap) T ep | T T

By convention:

BlnG_ 0z0Ilnd
o op op

g = —«

is defined so that the above becomes, after rearranging:

) 0z o Oz o Ry
ot ( gap) Vs (gap) ~o CpTQ pCpQ




Performing the operation 9/9p: on (5)

0 0 [ O%w
T [Vl )] = £+ 6)

WVogiap T ap LY

performing the operation Vﬁ and assuming that o is a function of pressure
only yields:

o [0z 0z R,
_v 2 L V2 . v?
Vi (or) ~ |7 V(5| -V 6 TR0

Adding the last two equations produces:

2

8[‘—/»

3 [V Ve (€+ D]V, [v Y ( az)]—av;w— e v2Q+f(f+5g)



Since 8z/8p = —a/g = —RT/gp, this relation can also be written as:

Ry

oViw+f (f+ &) Cp

82w %, [ V2Q

57 =V Ve &+ D) ?w V- V,T]-

This equation is called the Omega equation and represents a diagnostic second
order differential equation for %2 <.
The three terms on the right side represent the following:

;9% [\7 : ﬁp (&g + f )] — vertical variation of the advection of absolute vor-
ticity on a constant pressure surface.

v [\7 : ﬁpT ] — the curvature of the advection of temperature on
a constant pressure surface.

V%Q —— the curvature of diabatic heating on a constant
pressure surface.

(7)



The Omega equation is a second order diagnostic
(only spatial derivatives) equation in ®

It does not require information on the vorticity
tendency as with the vorticity equation

It does not require information on the temperature
tendency

However, the terms on the RHS employ higher-
order derivatives than are used 1n other methods of
vertical velocity estimation



To show the importance of the different terms in (7), note that the lefthand side of (7)
is of the form V> (although quantative solution is not easily obtained to (7) as

the coefficient of @im is different from 0°w/6%p). If V2w has a wave form :

Vo = —k>A sinkx

where A is a constant, and k = 2nt/L. where L is the wavelength, then :

o ~ A sin kx
therefore Vio~—-m
Since
®= Dp _ P +u8p +V8p+w(9p EW@Z—ng

Dt ot ox Oy 0z 0z

for typical synoptic values of pressure tendency and pressure gradient, then :

o~ -W

and therefore

w~ Vo

We now use these findings to interpret the three terms of the Omega equation more easily



Using the relation between 0/0p and 0/ 87:“, and our observation that
Viw ~ w,

wmﬁ[v'ﬁp(fg"‘f)] N_ﬂ[v'ﬁp(fg"i'f)]

op 0z
In most situations in the atmosphere, the vorticity advection is much smaller
in the lower troposphere than in the middle and upper troposphere since
V and §, are usually smaller near the surface. We have shown that on the
synoptic scale, cold air towards the poles requires that V becomes more
positive with height.
Using this observation of the behavior of V and ¢, with height:

wm"—v'ﬁp(fg"'"f)

In other words, vertical velocity is proportional to vorticity advection. Since

upper-level vorticity patterns are usually geographically the same as at midtro-
pospheric levels (since troughs and ridges are nearly vertical in the upper

troposphere, the 500 mb level is generally chosen to estimate vorticity advec-

tion. This level is also close to the level of nondivergence in which creation or

dissipation of relative vorticity is small, so that the conservation of absolute

vorticity is a good approximation.



Thus for the Northern Hemisphere where §, > 0 for cyclonic vorticity,

w>0if -V - V, (&, + f) >0 positive vorticity advection (PVA)

w<0if -V -V, (€, + f) < 0 negative vorticity advection (NVA)

To generalize this concept to the southern hemisphere, PVA should be called
cyclonic vorticity advection; NVA should be referred to as anticyclonic vor-

ticity.



Second Term: Temperature Advection

The curvature of the advection of temperature on a constant pressure surface

can be represented by :
ﬁﬁw-ﬁpT]f\J —k*Bsin kx

where B is a constant. Therefore,

V-ﬁpTw Bsinkz

Since;

w~ V2 V-V,

p

then

w ~ —V-ﬁpT.



ww—\_/'-ﬁpT.

Thus,

w>0if -V ﬁpT > (0 warm advection

w< 0if -V - 6,,7’ < 0 cold advection

The 700 mb surface is often used to evaluate the temperature advection
patterns since the gradients of temperature are often larger at this height
than higher up and the winds are significant in speed. The 850 mb height
can be used (when the terrain is low enough) although the values of V are
often substantially smaller.



Finally, since VgQ ~ —k? Csinkz can be assumed in this form, w ~
—Vﬁ@,and ( ~ w results.

Therefore,

w > 0 diabatic heating

w < 0 diabatic cooling

An example of diabatic heating on the synoptic scale is deep

cumulonimbus activity. An example of diabatic cooling 1s longwave
radiative flux divergence



« The preceding analysis suggests the following relation between vertical
motion, vorticity, temperature advection and diabatic heating:

w >0 w<0
Positive Vorticity Negative Vorticity
Advection (PVA) Advection (NVA)
Warm Advection Cold Advection
Diabatic Heating Diabatic Cooling

When a combination of terms exist that separately would result in different
signs of vertical motion (eg PVA with cold advection), the resultant
vertical motion will depend on the relative magnitudes of the individual
contributions

« Remember: this relation for vertical motion is only accurate as long as the
assumptions used to derive the Omega equation are valid



Vorticity Advection  Evaluate at 500 mb

Temperature Advection  Evaluate at 700 mb

» At elevations near sea level,
also evaluate at 850 mb

Diabatic Heating  Contribution of major
importance in synoptic weather
patterns (especially
cyclogenesis) are areas of deep
cumulonimbus

 Refer to geostationary satellite
imagery for determination of
locations of deep convection




General Notes

Mid-term exam: Thursday October 16, 12:10 —2:10

Includes theory and lab applications, weighted more
heavily toward theory

Derivations are fair game although the following
derivations will NOT be included: virtual temperature,
enthalpy, vorticity equation, Omega equation, Q vector
form of the Omega equation, and Petterssen’s equation.
You must however understand the final form of the various
equations, be able to interpret their terms and use these
equations 1n explanations of various weather phenomena

Bring questions to class next Tuesday






The Q Vector

« Although the Omega Equation has 3 terms that are clearly
interpreted as 3 separate physical processes, in practice there 1s
often a significant amount of cancellation between the terms.
Also they are not invariant under a Galilean transformation of
the zonal coordinate (adding a constant mean zonal velocity will
change the magnitude of each of the terms without changing the
net forcing of vertical motion).

* As aresult, an alternative form of the Omega equation, the Q-
vector form, has been developed in which the forcing of the
vertical motion 1s expressed in terms of the divergence of the
horizontal vector forcing field

e The derivation of the Q-vector Omega equation from Cotton’s
notes follows. It is included for completeness and will become
more meaningful once the associated approximations and
assumptions have been covered in dynamics.



On the fplane the quasi-geostrophic prediction equations may be expressed

simply as follow:

D u
£ _fv =0
£E iy,

D v
—£ L4+ fu, =0
Dt Jo

D,T
Dt

These are coupled by the thermal wind relationship

6u _RoOT ov R OT

g g

, p—t=———
6p A o  f, Ox

We now eliminate the time derivatives by ﬁrst taking

9 on-22 03
P (Q)f0 (Q3)

to obtain

Q1)

(Q2)

(Q3)

(Q4)



1% 0 %,
_‘?_[ “e “e “g V }—R 0 {5T+u y—-kv Q—S a)} 0

+u +v
Pl ot " ax 5 gy ol o e oy

Using the chain rule of differential equations, this may be rewritten as

RS, dw v, _[ o o 3]{ ou, R GT]

—tu,—+v
or “ox °oy op foay

[aug au av 5u } [Gu aT 8v GTJ
- P
Jo

op Ox ﬁpéy 6y5x ox Oy

But, by the thermal wind relation (Q4) the term in parenthesis on the right-

hand side vanishes and

Ou, Ou, Ov, Ou, R| 0T Ou, QT Ou,
o e Y Y




Using these facts, plus the fact that
Ou,/ox+0ov,/oy=0

we finally obtain the simplified form

aa) 2av
—_9 5
o— o ap 0, (Q5)
where
0, = {au aT v, aT} ROV,
=P\ vy ol o

Similarly, if we take

— — = (03
s (Q)+f0 (Q3)



followed by application of (Q4) we obtain

aa) , Ou
a_—_7 6
6x " op & (Q6)

where

ox 8x ox Oy p ox

R| Ou, aT ov, oT R ov,
Q] =—-—
If we now take 0 (Q6) /0x + 0 (Q5)/ Oy and use the continuity equation

to eliminate the ageostrophic wind, we obtain the Q-vector form of the

omega equation:

where




e The Q-vector form of the Omega equation 1s given by:

2
o+ 1,200 - 276
op
where
) R &V R oV
Q — (Qlan): ___g°VT,———g'VT
p ox p oy
and f,, 1s a constant (f plane approximation)

» This equation shows that on the f plane vertical motion is forced
only by the divergence of Q

« Unlike the traditional form of the Omega equation, the Q-vector
form does not have forcing terms that partly cancel.

* The forcing of ® can be represented simply by the pattern of the
Q vector

» It 1s evident from this form of the Omega equation that regions
where Q 1s convergent (divergent) correspond to upward

(downward) motion



Now we just saw that

_ R B\, R BAY,
Q=0Q,,Q,)=s| —VT,——— VT
( ) ( p OX p Oy )

B ou, 8T ov, OT ou, 8T ov, OT
OX 8X ox oy | oy 8X oy Oy
To understand what this means physically we place our X - axis parallel to the local

isotherm with cold air on the left, then above expression can be simplified to:

R v, 0T ROV, 8Tj R@T(GV avgj
poxdy’ poydy) poy 0y

Q=(Q1,Q2)=[

But —= = = therefore
OX

8V —Oou ov - Ou -
3=(Q,.Q,)= RaT[ , gj——RaT(gi—gjj

- o-te)




_ Y
Q:—RaTth .
p | Oy OX

J

* We can then get the Q-vector by determining the vectorial change
ot V, along the 1sotherm (with cold air on the left), then rotating the
resulting change vector by 90° clockwise, and then multiplying the

resulting vector by |0T/0y|

* In the regions on the map where Q-vectors converge there 1s rising
motion, and in the regions where the Q-vectors diverge there 1s
sinking motion



Q vectors (bold arrow) for idealized pattern of isobars (solid) and i1sotherms

(dashed) for a family of cyclones and anticyclones. (After Sanders and
Hoskins, 1990).



Orientation of Q vectors (bold arrows) for confluent (jet entrance flow.
Dashed lines are isotherms. (After Sanders and Hoskins, 1990).



Petterssen’s Development Equation

 We now derive an equation that gives us information about
the change of surface absolute vorticity

 If the vertical advection of absolute vorticity, the tilting term
and the solenoidal term are 1ignored, then the vorticity
equation can be written as:

—

5(528:‘ f)+VH 'ﬁp(gz"' f):O

where we assumed that the above equation 1s valid at the level
of nondivergence (~ 500 mb)

—

V, 1s the wind on the pressure surface

 Since, 1f the wind 1is in geostrophic balance:



VHsoo — VHSFC + AV-Q

where AVQ is the geostrophic wind shear. Thus,

(&z + f)SOO — (€z + f)spc + (fz + f)T

since V X \7H500 = (V X VHspc) + (V X Al_/") We can write the vorticity
equation as:

(& + f)src
ot

From the thermal wind equation,

8(62 + f)T
ot

— _VHSUO ) vp(gz + f)SOO -

5 _ 9
V x AV, = ?vf; (Az)

where Az = z500 — zg with zs599 the 500 mb height and zg the surface elevation
so that,

a(fz"'f)T _gvga(AZ)
ALY



G(Az)
ot

We need an expression for

We saw the following equation in our derivation of the

Omega equation :

o —g% V-V g% —(DG:&Q
ot op "\ T op pc,



Integrating between the surface pressure, psrc, and 500 mb yields, after
rearranging:

500 2500 500mb
0z 3(Az) - Oz R
- = — = = V. —Q | d
gfdt( )dp gd /dz ey / ( Vp(dp)+wa+pc )p

PSFcC DPSFC

Performing Vf, on the above equation, substituting into the vorticity equation
yields:

500
(. + f)src ~ g 5. 0z
ot = _VHSUU ) vp(fz + f)SOO + }V?, / VH : vp 51_9 dp
pPsFc
V2 500 RV o
d —d
f wo ap + pr P

PsFcC PSFcC



500
0+ sre _ gy (gz+f)soo+fv [ Vu-v, (c%) dp

at PSFC 8p
V2 500 RV? 500
wo dp + de
f PSFc fC p
PSFcC

This is the Petterssen development equation for the change of surface
absolute vorticity due to:

o —VHsoo - V(€. + f)s00 : horizontal vorticity advection at 500 mb.

972 0 dz Roz2 N Uyv :
e IVL- [ Vu-V, (a_p) dp = =5V, | —* (T)dp : proportional

PSFcC PSFC
to a pressure-weighted horizontal temperature advection between the

surface and 500 mb.

2 500mb
° zf’i [ ow dp: proportional to vertical motion through the layer.

Psrc

. pr f de proportional to a pressure-weighted diabatic heating pat-
tern.



* The thermal wind equation provides us with information
about cold and warm air advection

* Previously we derived the thermal wind equation 1n
Cartesian coordinates — we will now derive the equation
using pressure as a vertical coordinate:

The horizontal components of the geostrophic wind in pressure
coordinates can be written as :

u :—E% and _goz

vV =
£ foy £ f ox

which can be written using vector notation :

o .8
Vg —kX;sz



o T8
Vg :kvapz

Differentiating this expression with respect to pressure :

op f " Op
Making use of the hydrostatic asumption and the ideal gas law

which gives 0z/0p =-1/pg =-R T/ gp, and substituting this into the

equation above gives:

Y B
== —&k xV T
olnp f ’
the components of which are:
ou, _R, oT and v, :_&G_T
onp f Oy Olnp f ox

The change of geostrophic wind with pressure 1s therefore proportional to the

gradient of temperature on a constant pressure surface



—

e M xV T

Integrating this equation between two pressure surfaces and rearranging :

[ e dmp=V, -V, =AV, =S4k« ¥ Tin| 2
np, OINP »2 P! f P,

where the mean value theorem has been used to take ?pf from the integral.

| a7 Ry Tln(&]

The quantity Avg is called the THERMAL WIND

The thermal wind equation can also be written in terms of a thickness gradient.

Performing the gradient operation in the thickness equation Az = —¢ ln(p1 / pz) gives:

V (Az) = &m[&Jﬁj
g \p,

which means that the thermal wind equation can be written as :

Avg = %E X ﬁp(Az)




Implications of the Thermal Wind Relations
1) Frontal Strengths

We just saw that :
AV =859 (az)
f p

Since the magnitude of Avg is related to the vlaue of the average horizontal

temperature gradient through the thickness equation, A\l‘ is used to classify

the strength of synoptic fronts. Using the pressure surfaces 1000 mb and 500 mb

the following criteria have been established for use by the US Weather Service :

‘A\l‘ <12.5ms’ —  no front
12.5ms” < ‘A\l‘ <25.0ms’ —  weak front
25.0ms’ < ‘Avg‘ <375ms’ —  moderate front

37.5ms” < ‘A\l —  strong front

Since Vg at 1000 mb is usually small, strong winds at 500 mb are indicative

of a strong front



2) Jet Stream Location

We also saw that:

oV R,
f

g

LkxV T

8lnp

As the sign of the synoptic temperature gradient 1s
usually the same up to the tropopause, the geostrophic
wind continues to increase with height. Above the
tropopause, the temperature gradient reverses sign so
that the geostrophic wind decreases with height. The
region of strongest geostrophic wind near the
tropopause is called the jet stream.



3) Temperature Advection

The magnitude and direction of the thermal wind can be used to
estimate temperature advection

The thermal wind blows parallel to the 1sotherms with the warm air
to the right facing downstream in the Northern Hemisphere

Geostrophic winds which rotate counterclockwise (back) with
height are associated with cold advection in the Northern
Hemisphere

Geostrophic winds which rotate clockwise (veer) with height are
associated with warm advection in the Northern Hemisphere

In the Southern Hemisphere the reverse is true

In the case of no temperature advection, only the speed of the
geostrophic wind, not the direction, changes with height. With cold
alr towards the pole, this requires that the westerlies increase in
speed with height with a low-level westerly geostrophic wind. With
warm air to the north, the westerlies would decrease with height.
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Potential Vorticity

* Rossby’s (Barotropic) Potential Vorticity
» Ertel’s Potential Vorticity
* Uses of PV



Earliest mention of potential vorticity was by Rossby (1940)

Used it to explore the character of flow patterns in the
atmosphere and how they change

Using a barotropic model Rossby defined potential vorticity
as:

py =& 1

where ( is the relative vorticity, f 1s the Coriolis parameter and
h 1s the depth of the fluid.

For adiabatic, frictionless flow this quantity 1s conserved

If we stretch the fluid (increase h) then we must increase the
absolute vorticity. For zonal flows this means that as we must
increase (, resulting in increased cyclonic flow.

PV contains information about mass and flow fields in one
variable



* A more general definition for potential vorticity was
found by Ertel (1942)

 Ertel used a three-dimensional vector form of the
equation of motion for frictionless flow, the
thermodynamic equation for adiabatic motion and
the mass continuity equation and derived the
following conservation principle:

R(ié’a 6(0}:0
Dt{ p

where p 1s the density, C, 1s the absolute vorticity
vector, and ¢ 1s any conservative thermodynamic
variable. In meteorology, ¢ 1s typically taken to be
potential temperature



 Using potential temperature as our thermodynamic variable, we
then get:

DP D
Dt Dt

lgaﬁej:o
Yo,

* The conserved quantity

P:igaﬁe
Yo,

1s called Ertel’s potential vorticity

* Note: the only assumptions are for frictionless, adiabatic flow
compared to barotropic model assumptions made by Rossby

* Ertel’s theory can be extended to include diabatic and frictional
effects (see Cotton’s notes for derivation 1f you are interested)



e Units of PV: K kg-! m? s-!
 In meteorology, the following definition 1s
typically used:

— 1 PVU=10°K kg! m? s'! where PVU stands for
potential vorticity units

— Values of IPV less than ~1.5 PVU are usually
associated with tropospheric air

— IPV values larger than 1.5 PVU are usually
associated with stratospheric air



 Isentropic Potential Vorticity (IPV) 1s given by:

P = (8;9 + f)(—g 219)) = const

Abspl.ute\ rStati.c. \
vorticity stability

where (, 1s the vertical component of relative vorticity
evaluated on an 1sentropic surface

« Potential vorticity 1s therefore the product of the absolute
vorticity and the static stability. If the static stability is
increased (1.e., if 00/0p 1s made more negative), absolute
vorticity (which 1s positive) i1s decreased and vice versa.

* The “potential” in potential vorticity relates to the value
the relative vorticity would have 1f a parcel 1s moved
adiabatically to a standard latitude and static stability.



IPV is defined with a minus sign so that its value 1s
normally positive in the Northern Hemisphere

The expression on the previous slide shows that potential
vorticity 1s conserved following the motion in adiabatic,
frictionless flow

PV i1s always in some sense a measure of the ratio of the
absolute vorticity to the effective depth of the vortex. In
the expression on the previous slide, the effective depth 1s
just the distance between 1sentropic surfaces measured 1n
pressure units (-00/0p)

The conservation of PV 1s a powerful constraint on large-
scale motions of the atmosphere



00
P=(¢,+ f)-0 a_p) = const

g+ &6
{
T~ Ch_______b
8p
I

A cylindrical column of air moving adiabatically, conserving

potential vorticity

Ref:
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Surface cyclones have been found to be
accompanied by a positive PV anomaly (high PV
air relative to the environment) aloft

Tracer of stratospheric air

— As PV i1s a function of static stability, regions with
strong static stability should also be regions of high
PV

— The stratosphere has been recognized as a possible
source region or reservoir of high-PV air — above the
tropopause 0 rapidly increases with height and hence
so does PV

— PV values larger than 1.5 PVU are usually associated
with stratospheric air



3. Indicator or troughs and ridges, as well as
closed lows and highs

- Tongues of high-IPV(low-IPV), stratospheric
(tropospheric) air that extend equatorward (poleward)
from the high-IPV reservoir (low-IPV troposphere) are
associated with troughs (ridges) in the height field and
cyclonic (anticyclonic) flow

— Isolated regions of stratospheric IPV that are situated
equatorward from the reservoir tend to be associated
with troughs or closed lows in the height field and
associated cyclonic flow
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Ertel’s PV (PVU) evaluated on the 325K surface (left) on (a) 1200
UTC, May 16, (b) 1200 UTC, May 17, and (c) 1200 UTC, May 18,
1989. Corresponding 500 mb height contours, temperature and
dew-point depression (°C). Ref: Bluestein



4. Lee Cyclogenesis

Westerly Flow

Suppose that upstream of the mountain barrier flow is
a uniform zonal flow => (=0

If the flow 1s adiabatic, each column of air is confined
between the potential temperature surfaces 0, and 0,
+00 as 1t crosses the mountain

Potential temperature surface 6, near the ground
approximately follows the contours of the ground. A
potential temperature surface 0, + 00 several
kilometers above the ground will also be deflected
vertically, however, the vertical displacement at
upper levels 1s spread horizontally and has less
displacement in the vertical than that near the ground



Due to the vertical displacement of the upper-level
isentropic surfaces there 1s a vertical stretching of air
columns upstream of the topographic barrier

=> causes -00/0p to decrease

=> ( must become positive to conserve PV

=> air column turns cyclonically as 1t approaches the
topographic barrier

=> the cyclonic curvature causes a poleward drift so

that f also increases which reduces the change in C
required for PV conservation

As the column begins to cross the barrier its vertical
extent decreases

=> relative vorticity must then become negative

=> air column will acquire anticyclonic vorticity and
move southward



- Once the air column has passed over the mountain and
returned to its original depth it will be south of its
original latitude so that f will be smaller and the relative
vorticity must be positive

=> trajectory must have cyclonic curvature
=> column will be deflected poleward

=> when parcel reaches its original latitude 1t will still
have a poleward velocity component and will continue
poleward gradually acquiring anticyclonic curvature
until its direction 1s reversed

=> parcel will then move downstream conserving PV
by following a wave-like trajectory in the horizontal
plane

- A steady westerly flow over a large-scale mountain
barrier will therefore result in a cyclonic flow pattern
immediately to the east of the barrier (called the lee
side trough) followed by an alternating series of ridges
and troughs
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Schematic view of westerly flow over a topographic barrier: (a) the
depth of the fluid column as a function of x and (b) the trajectory of a
parcel in the x,y plane Ref: Holton



» Easterly Flow

— Similar reasoning may be applied to obtain the effects
of a large topographic barrier on a purely zonal easterly
flow

— There 1s a dramatic difference between easterly and
westerly flow over large-scale topographic barriers

— In the westerly wind case the barrier generates wavelike
disturbances in the streamlines that extend downwind
from the barrier

— In the easterly wind case the disturbance in the
streamlines damps out away from the barrier

— The differences are due to the dependence of the
Coriolis parameter on latitude
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Schematic view of easterly flow over a topographic barrier: (a) the
depth of the fluid column as a function of x and (b) the trajectory of a
parcel in the x,y plane Ref: Holton




Midterm Exam: General Notes

Mid-term exam: Thursday October 16, 12:10 —2:10

Includes theory and lab applications, weighted more
heavily toward theory

Derivations are fair game although the following
derivations will NOT be included: virtual temperature,
enthalpy, vorticity equation, Omega equation, Q vector
form of the Omega equation, and Petterssen’s equation.

You must however understand the final form of the various
equations, know what basic equations and assumptions are
used 1n the derivations, be able to interpret their terms and
use these equations in explanations of various weather
phenomena

Bring colored pencils
No programmable calculators



Chapter 2 Outline

* The primary variables

 Instrumentation used to measure the
primary variables
* Remote sensing
— Electromagnetic spectrum and associated laws

— Instrumentation: satellite, radar, wind profilers



Chapter 3 Outline

The Gas Laws

— Ideal gas law: general, dry air, water vapor
— Universal Gas constant, gas constant for dry air and water vapor
— Virtual temperature

Hydrostatic Equation
Geopotential and geopotential height
— High and low pressure, ridges and troughs

Thickness

— Thickness / Hypsometric equation
— Warm and cold core systems
— Uses of thickness: frontal location, rain-snow line, warm or cold
air advection
First Law of Thermodynamics
— Various forms of the first law
— Joule’s law

Specific Heats
— At constant volume
— At constant pressure



Enthaply
Potential temperature
Dry Adiabatic Lapse Rate

Water vapor and moisture parameters:
— Mixing ratio
— Specific humidity
— Saturation vapor pressure with respect to liquid water and ice
— Saturation mixing ratios
— Dew point temperature and frost point temperature
— Lifting condensation level
— Wet bulb temperature

Saturated Adiabatic Lapse Rate
Equivalent potential temperature
Static stability

Conditional 1nstability
Convective or potential instability



Chapter 4 Outline

Coordinate Systems

— Velocity Components

— Pressure as a vertical coordinate
— Other vertical coordinates

— Natural coordinates

Apparent Forces
— Coriolis Force
— Effective gravity

Thermal Wind
Balance Winds

— Geostrophic, gradient, cyclostrophic, friction



Continuity Equation
— Material derivative form, flux form,

— Incompressibility, convergence, divergence, level of
nondivergence, vertical motion

— Pressure tendency equation
Baroclinity and barotropy
Vorticity

— Components

— Absolute and relative vorticity

— Vorticity equation and interpretation of all terms
— Rotational and shear vorticity

Omega Equation

Q vectors

Petterssen’s Developmental Equation
Potential Vorticity
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