
Balance Winds

• Geostrophic Balance
• Gradient Wind
• Cyclostrophic Wind Balance
• Balance with Friction / Ekman Balance



Geostrophic Balance
The equation of motion can be written as:

)k-gG( vector nalgravitatio  theis G

friction of effects  therepresents F

  termCoriolis  thecalled is V2

earth  theof raterotation   the toingcorrespond day/2

pole)north   thefrom upward
 pointing (positiveearth   theoflocity angular ve  theis  where

GFV2p1
dt
Vd

rrr

r

rr

r

rrrr
r

=

×Ω

π=Ω

Ω

+−×Ω−∇
ρ

−=



Coriolis Term
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For the case of:

• no friction (Fu = Fv ≡ 0)

• no acceleration (du/dt = dv/dt ≡ 0)

• |u|, |v| >> w which is typical on the synoptic scale

then
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where ug and vg are the geostrophic wind components defined by 
these relations. The geostrophic wind relation can be written in vector 
notation as:
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Gradient Wind
• The geostrophic wind balance assumes that the wind 

flow is straight
• A more general form of a balanced wind can be 

obtained if accelerations due to curvature in the height 
or pressure fields are taken into account (remember 
that changes in the direction of the velocity vector 
with time result in acceleration)

• The gradient wind like the geostrophic wind is 
frictionless, but it is not unaccelerated
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The direction of the unit vector at points A, B, C and D are 
denoted by the appropriate Cartesian unit vector
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• To investigate the balanced wind which develops when the 
acceleration due to curvature is included along with the Coriolis 
force and the pressure gradient force, we will focus on point A.
There is no loss of generality as the coordinate system can always 
be rotated so that a point of interest corresponds to location A. 

• At point A, ug = 0, while vg > 0 for a low and vg < 0 for a high 
pressure in the northern hemisphere. Substituting into:

and ignoring friction and the fw Coriolis term we get:
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• The velocity vgr which solves this relation is called the 
GRADIENT WIND
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• The gradient wind balance is a three-way balance between the Coriolis 
force, the centrifugal force and the horizontal pressure gradient force

Centrifugal force
Pressure gradient force

Coriolis force
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• For a cyclone in the northern hemisphere, vg > 0 at A so that the radical 
is always real => no limit to the magnitude of the gradient wind

• For an anticyclone in the northern hemisphere, vg < 0 at A so that      
f2RT

2 > 4RTfvg   => vg < fRT/4 for the radical to be real => there is a 
constraint on the magnitude of the pressure gradient force in anticyclones 
that does not exist for low pressures. This is the reason that lows on 
synoptic weather maps often have tight gradients while highs don’t. 
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• vgr < vg for a cyclone as vg > 0 at A 

•|vgr| > |vg| for an anticyclone as vg < 0 at A

• These inequalities show that for the same pressure gradient (as represented by 
the geostrophic wind), the gradient balanced wind is stronger around a high 
than a low

• The gradient winds associated with a cyclone are SUBGEOSTROPHIC
because the centrifugal force helps to balance the acceleration due to the 
pressure gradient force, therefore the Coriolis terms fvgr and vgr don’t need to be 
as large

•The winds associated with an anticyclone are SUPERGEOSTROPHIC
because a large Coriolis acceleration (and hence large value of vgr) is needed to 
balance the sum of the acceleration due to the pressure gradient force and the 
centrifugal force
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Cyclostrophic Wind Balance

• When Coriolis force is neglected in the 
gradient wind balance we obtain a balance 
between the centrifugal force and the 
pressure gradient force – this balance is 
called the cyclostrophic wind balance

• Used to estimate wind speeds in small-scale 
vortices such as tornadoes and dust devils
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Balance with Friction
• To evaluate the impact of friction on the resultant wind 

balance, we can retain the friction terms in our horizontal 
equations of motion
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• Friction decelerates the flow and this turns the wind towards low 
pressure => results in low-level divergence out of anticyclones and low-
level convergence into cyclones

• The frictional acceleration acts directly opposite to the direction of the 
wind

• The Coriolis acceleration is perpendicular to the wind direction

• The centrifugal force is also perpendicular to the instantaneous wind 
direction



Geostrophic wind Gradient wind



Frictional Effects



Summary of Balance Winds
Balance Wind Assumptions Balance
Geostrophic 
flow

Neglect friction 
and acceleration 
due to curvature 

Pressure gradient 
force and Coriolis 
force

Gradient wind Neglect friction Pressure gradient 
force, Coriolis 
force and 
centrifugal force

Cyclostrophic 
flow

Neglect friction 
and Coriolis 
force

Pressure gradient 
force and 
centrifugal force

Balance with 
Friction

All forces now 
included

Pressure gradient 
force, Coriolis 
force, centrifugal 
force and friction
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Continuity Equation
• The equation of continuity 

is given by:

• Physical interpretation: if a 
volume having dimensions 
∆x, ∆ y and ∆ z experiences 
convergence, then the 
material volume decreases. 
However, since the amount 
of mass in a material 
volume remains constant, 
the density must increase
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• The continuity equation can also be expressed as:

This is the flux form of the continuity equation – says that mass in 
a volume can change locally only through flux convergence or 
divergence

• If we assume that the atmosphere is incompressible then the 
density of the parcel does not change:
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• This means that for an incompressible atmosphere the atmosphere is 
three-dimensionally nondivergent

• The incompressible assumption implies that convergence in one or two 
directions must be balanced by divergence in the other direction(s) and 
that mass is conserved.

• The incompressible assumption is useful in helping to understand 
atmospheric systems that are not strongly dependant on compressibility. 
This approximation fails in strong thunderstorm updrafts, tornadoes etc

• For deep convection where the impacts of compressibility are important 
in the vertical, the following continuity equation is used:

where the base-state density ρ(z) is a function of height only
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• Assume that the atmosphere behaves as an incompressible fluid:

Horizontal convergence    =>      Vertical stretching

Horizontal divergence     =>        Vertical shrinking
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Level of Nondivergence
• Vertical velocity is constrained to be zero at the ground and at the 

tropopause
• If w is nonzero, its sign is often the same at all levels in a column of the 

troposphere => the sign of ∂w/∂z must reverse at some level. At this 
level:

which from the continuity equation implies

• This level is therefore called the level of nondivergence. It is typically 
found near 550-600mb. 

• Rising motion above a level surface must be accompanied by 
convergence below and compensating divergence aloft. 

• Similarly sinking motion must be accompanied by divergence below and 
convergence aloft
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Pressure Tendency Equation
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Divergence and Vertical Motion
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• Winds around high 
pressure systems diverge. 
Conservation of air mass 
requires subsidence over the 
high to replace the 
horizontally diverging air

• Similarly horizontally 
converging air around low 
pressure systems are 
associated with upward 
motion

Source: Stull, 2000



Baroclinity (Baroclinicity) and Barotropy

• Baroclinity (or Baroclinicity): The state of stratification in 
a fluid in which surfaces of constant pressure (isobaric) 
intersect surfaces of constant density (isoteric)

• Barotropy: The state of a fluid in which surfaces of 
constant density (or temperature) are coincident with 
surfaces of constant pressure; it is the state of zero 
baroclinity 

• When there are temperature variations on an isobaric 
surface the atmosphere is said to be baroclinic. If there are 
no temperature variations the atmosphere is said to be 
barotropic 



Barotropic Atmosphere Baroclinic Atmosphere

ρ and p surfaces coincide ρ and p surfaces intersect

p and T surfaces coincide p and T surfaces intersect

p and θ surfaces coincide p and θ surfaces intersect

No geostrophic wind 
shear

Geostrophic wind shear

No large-scale w Large-scale w

Examples of baroclinic systems:

• Cold fronts

• Sea breezes

• Mountain slope flows



Barotropic Baroclinic Barotropic



Barotropic Atmosphere

• eg: sea-breeze during early morning

• Pressure and density isolines are 
parallel / coincident

• No circulation

Baroclinic Atmosphere

• eg: sea-breeze in the afternoon

• Air over the land heats up more rapidly 
than that over water

• Pressure and density isolines intersect

• Circulation develops

• The lighter fluid over land “feels” the 
same pressure gradient force as that over 
the ocean – the lighter fluid will tend to 
rise more rapidly resulting in a net 
counterclockwise circulation

P1>P2>...>P5 and ρ1>ρ2>....>ρ5

Sea Land

Sea Land

High density Low density



Vorticity

• Vorticity: A vector measure of the rotation in a fluid, and is 
defined mathematically as the curl of the velocity:

• The vorticity of a solid rotation is twice the angular velocity 
vector 

• In meteorology, vorticity usually refers to the vertical 
component of the vorticity
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Components of Vorticity
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• The components of the vorticity ξ (xi), η (eta) and ζ (zeta) are 
measures of the spin about the x, y and z axes. 



Relative and Absolute Vorticity
• Relative vorticity (or local vorticity) (ω): 

– the vorticity as measured in a system of coordinates fixed 
on the earth's surface

– curl of the relative velocity

• Absolute vorticity (ωa)
– the vorticity of a fluid particle determined with respect to 

an absolute coordinate system (takes into account the 
rotation of the earth)

– curl of the absolute velocity
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• The vertical component of the absolute vorticity 
vector (as defined above) is given by the sum of the 
vertical component of the vorticity with respect to 
the earth (the relative vorticity) and the vorticity due 
to the rotation of the earth (equal to the Coriolis 
parameter) f:

• The difference between absolute and relative 
vorticity is therefore simply the planetary vorticity 
(f=2Ω sin φ):
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• Regions of large positive (negative) ζ tend 
to develop in association with cyclonic 
storms in the Northern (Southern) 
hemisphere – the distribution of relative 
vorticity is therefore an excellent diagnostic 
tool for weather analysis

• Absolute vorticity tends to be conserved 
following the motion at midtropospheric
levels – forms the basis to simple dynamical 
forecast schemes



Vorticity Equation
We are now going to use the equations of motion to derive an 
equation for the time rate of change of the vertical component of 
vorticity: 
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To get the vertical component we subtract the partial derivative of (1) 
with respect to y from the partial derivative of (2) with respect to x:
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The vorticity equation is therefore given by:
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The vorticity equation states that the rate of change of the absolute 
vorticity following the motion is given by the sum of the 
divergence term, the tilting or twisting term, the solenoidal term 
and the friction term



Divergence Term
• Ignoring the tilting, baroclinic and frictional terms 

we can write the vorticity equation as:
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• When divHVH <0 we have convergent flow => absolute 
vorticity increasing

• When divHVH >0 we have divergent flow => absolute 
vorticity decreasing

• Analogous to spinning ice skater pulling their arms in





Tilting
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Baroclinic Term

Tp
p
R

x
T

y
p

y
T

x
p

p
R

y
T

x
p

x
T

y
pp

y
p

x
p

y
p

x
pT

p
R

T
x
Tp

x
pT

y
p

T
y
Tp

y
pT

x
p

p
RT

RT
p

xy
p

RT
p

yx
p

Rt
p
1-

xy
p

yx
p1-

:retemperatuofin termswritten becan termbaroclinic The

HH

2

222

2

22

∇×∇=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−
∂
∂

∂
∂

−=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∂
∂

−
∂
∂

∂
∂

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
∂
∂−

∂
∂

∂
∂

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
ρ∂

∂
∂

−
∂
ρ∂

∂
∂

ρ

rr



Air moving through a wave pattern can acquire changing vorticity due to 
baroclinic stratification

Source: Dutton

Isotherms are of longer 
wavelength than the pressure 
wave – air moving through the 
wave will acquire cyclonic 
vorticity as it approaches the 
trough and intensification may be 
expected

Isothermal wave is of shorter 
wavelength and the air moving 
into the trough will be acquiring 
increasing anticyclonic vorticity 
so that the trough may be 
expected to become less 
pronounced





Relative Vorticity in Natural Coordinates

Relative vorticity can also be expressed in the so-called natural 
coordinates which are defined with respect to the parcel:
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Rotational Vorticity: V/RT represents the angular velocity of solid 
rotation of an air parcel about a vertical axis with radius of curvature 
RT

Shear Vorticity: the lateral shear term, -∂V/∂n, represents the 
effective angular velocity of an air parcel produced by distortion due 
to horizontal velocity differences at its boundaries





• As wind speeds in the westerlies in the midlatitudes
usually increase monotonically with height in the 
troposphere, the wind, and therefore the vorticity 
fields at the upper levels exert a major control on the 
synoptic vertical motion field as shown by 
divHV≈-∂w/∂z

• We saw previously that to the extent that a parcel 
trajectory is in gradient wind balance the parcel will 
decelerate as it moves from a ridge crest into the 
trough, and accelerate as it moves from the trough to 
the ridge

• As divHV≈-∂w/∂z is generally a good approximation 
in the earth’s troposphere, the vertical velocities 
seen in the next slide occur to conserve mass







Some Issues to Look At

• Mid-Term Exam: Thursday October 16 
12:10-2:10

• Greek letters names 
ξ (xi), η (eta) and ζ (zeta)

• Corrections made to zeta where need be
• Continuity equation interpretation
• Simple vorticity plots
• Pressure coordinates 



Continuity Equation
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• The continuity equation does NOT automatically imply that when the 
LHS > 0 (divergence) that this is associated with sinking motion (and 
visa versa for LHS < 0 and rising motion)

• To understand the relationship we need to know the profile of w – this 
includes the sign of w and whether w is increasing or decreasing with 
height

• Assumptions for determining relationship between conv/div and 
rising/sinking air:

– w = 0 at the surface
– w = 0 at the tropopause
– w is the same sign in a column of air

• Note: we could have w of different signs in the column – this would give us 
more than one level of nondivergence which is possible. However, on a 
synoptic scale, the assumption that w is of the same sign in a column is 
reasonable

• Knowledge of the w profile and its change with height then determines 
the level of nondivergence, and the relationship between w and 
divergence/convergence
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Vertical Vorticity Plots
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• Options 1 and 2 are 
ROTATIONAL motion

• Options 3 and 4 are called 
STRAINING motion
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Primitive Equations in Isobaric Coordinates

1) Material Derivative
• Cartesian Coordinates: x, y, z, t

• Isobaric Coordinates: x, y, p, t
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2) Pressure Gradient Term

• Any scalar φ can be represented in either coordinate system and 
the value of φ at a point (x,y,z) is the value of φ in the pressure 
coordinate system at the point (x,y,p) where z = z(x,y,p,t)
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3) Continuity Equation

It can be shown (see Holton pg 59-60) that the continuity 
equation in isobaric coordinates is given by:

It should be noted that the continuity equation does not have 
any reference to the density field, nor does it involve any 
time derivatives. This is one of the main advantages for 
using the isobaric coordinate system. 
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The Omega Equation

• It is useful to combine the vorticity equation 
and the first law of thermodynamics into a 
single equation that describes the vertical 
motion above the surface associated with 
extratropical cyclones and other types of 
synoptic weather features

• This equation, which we will now derive, is 
called the OMEGA equation



• Step 1: Derive vorticity equation on a constant pressure surface:
– Proceed as we did before to form the vorticity equation by subtracting ∂/∂y of 

the u momentum equation in isobaric coordinates from ∂/∂x of the v momentum 
equation in isobaric coordinates

– Neglecting the tilting and friction terms
– We get:

(1)

where ζp is the relative vorticity on a constant pressure surface, 

(2)

• Step 2: Form a geostrophic vorticity:
– Using the geostrophic wind relation:

(3)
we can obtain the geostrophic vorticity:

(4)
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• From (4) the vorticity can be estimated from the curvature of the height 
contours on a constant pressure analysis

• Substituting (4) into (1), where ζp is set equal to ζg gives:

(5)

• Step 3: Include thermodynamics using the First Law of Thermodynamics

(6)

where Q represents changes in sensible heat of a parcel (diabatic effects). Q can 
include explicit synoptic-scale phase changes of water as represented by –Ldws, as 
well as radiative flux divergence and subsynoptic-scale phase changes of water due 
to cumulus clouds
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• Equation (6) can be written as:





on (5)



(7)



Notes

• The Omega equation is a second order diagnostic 
(only spatial derivatives) equation in ω

• It does not require information on the vorticity 
tendency as with the vorticity equation

• It does not require information on the temperature 
tendency

• However, the terms on the RHS employ higher-
order derivatives than are used in other methods of 
vertical velocity estimation
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First Term:Vorticity Advection



ticity.



Second Term: Temperature Advection
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Third Term: Diabatic Heating

An example of diabatic heating on the synoptic scale is deep 
cumulonimbus activity. An example of diabatic cooling is longwave
radiative flux divergence



Summary
• The preceding analysis suggests the following relation between vertical 

motion, vorticity, temperature advection and diabatic heating:

• When a combination of terms exist that separately would result in different 
signs of vertical motion (eg PVA with cold advection), the resultant 
vertical motion will depend on the relative magnitudes of the individual 
contributions

• Remember: this relation for vertical motion is only accurate as long as the 
assumptions used to derive the Omega equation are valid 

w > 0 w < 0
Positive Vorticity 
Advection (PVA)

Negative Vorticity 
Advection (NVA)

Warm Advection Cold Advection

Diabatic Heating Diabatic Cooling



Rules of Thumb for Synoptic Analyses
Vorticity Advection • Evaluate at 500 mb

Temperature Advection • Evaluate at 700 mb
• At elevations near sea level, 
also evaluate at 850 mb

Diabatic Heating • Contribution of major 
importance in synoptic weather 
patterns (especially 
cyclogenesis) are areas of deep 
cumulonimbus
• Refer to geostationary satellite 
imagery for determination of 
locations of deep convection



General Notes
• Mid-term exam: Thursday October 16, 12:10 – 2:10
• Includes theory and lab applications, weighted more 

heavily toward theory
• Derivations are fair game although the following 

derivations will NOT be included: virtual temperature, 
enthalpy, vorticity equation, Omega equation, Q vector 
form of the Omega equation, and Petterssen’s equation. 
You must however understand the final form of the various 
equations, be able to interpret their terms and use these 
equations in explanations of various weather phenomena

• Bring questions to class next Tuesday



Omega Equation



The Q Vector
• Although the Omega Equation has 3 terms that are clearly 

interpreted as 3 separate physical processes, in practice there is 
often a significant amount of cancellation between the terms. 
Also they are not invariant under a Galilean transformation of 
the zonal coordinate (adding a constant mean zonal velocity will
change the magnitude of each of the terms without changing the 
net forcing of vertical motion). 

• As a result, an alternative form of the Omega equation, the Q-
vector form, has been developed in which the forcing of the 
vertical motion is expressed in terms of the divergence of the 
horizontal vector forcing field

• The derivation of the Q-vector Omega equation from Cotton’s 
notes follows. It is included for completeness and will become 
more meaningful once the associated approximations and 
assumptions have been covered in dynamics. 











• The Q-vector form of the Omega equation is given by:

• This equation shows that on the f plane vertical motion is forced 
only by the divergence of Q

• Unlike the traditional form of the Omega equation, the Q-vector 
form does not have forcing terms that partly cancel. 

• The forcing of ω can be represented simply by the pattern of the 
Q vector

• It is evident from this form of the Omega equation that regions 
where Q is convergent (divergent) correspond to upward 
(downward) motion
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• We can then get the Q-vector by determining the vectorial change 
of Vg along the isotherm (with cold air on the left), then rotating the 
resulting change vector by 90° clockwise, and then multiplying the 
resulting vector by |∂T/∂y|

• In the regions on the map where Q-vectors converge there is rising 
motion, and in the regions where the Q-vectors diverge there is 
sinking motion







Petterssen’s Development Equation

• We now derive an equation that gives us information about 
the change of surface absolute vorticity

• If the vertical advection of absolute vorticity, the tilting term 
and the solenoidal term are ignored, then the vorticity 
equation can be written as:

where we assumed that the above equation is valid at the level 
of nondivergence (~ 500 mb)

• Since, if the wind is in geostrophic balance:
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The Thermal Wind Equation

• The thermal wind equation provides us with information 
about cold and warm air advection

• Previously we derived the thermal wind equation in 
Cartesian coordinates – we will now derive the equation 
using pressure as a vertical coordinate:
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Implications of the Thermal Wind Relations
1) Frontal Strengths
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2) Jet Stream Location
We also saw that:

As the sign of the synoptic temperature gradient is 
usually the same up to the tropopause, the geostrophic 
wind continues to increase with height. Above the 
tropopause, the temperature gradient reverses sign so 
that the geostrophic wind decreases with height. The 
region of strongest geostrophic wind near the 
tropopause is called the jet stream.
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3) Temperature Advection
• The magnitude and direction of the thermal wind can be used to 

estimate temperature advection
• The thermal wind blows parallel to the isotherms with the warm air 

to the right facing downstream in the Northern Hemisphere
• Geostrophic winds which rotate counterclockwise (back) with 

height are associated with cold advection in the Northern 
Hemisphere

• Geostrophic winds which rotate clockwise (veer) with height are 
associated with warm advection in the Northern Hemisphere

• In the Southern Hemisphere the reverse is true
• In the case of no temperature advection, only the speed of the 

geostrophic wind, not the direction, changes with height. With cold 
air towards the pole, this requires that the westerlies increase in 
speed with height with a low-level westerly geostrophic wind. With 
warm air to the north, the westerlies would decrease with height. 



Ta < Tb, P1 > P2
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Potential Vorticity

• Rossby’s (Barotropic) Potential Vorticity 
• Ertel’s Potential Vorticity 
• Uses of PV



Rossby (Barotropic) Potential Vorticity
• Earliest mention of potential vorticity was by Rossby (1940)
• Used it to explore the character of flow patterns in the 

atmosphere and how they change
• Using a barotropic model Rossby defined potential vorticity 

as:

where ζ is the relative vorticity, f is the Coriolis parameter and 
h is the depth of the fluid. 

• For adiabatic, frictionless flow this quantity is conserved
• If we stretch the fluid (increase h) then we must increase the 

absolute vorticity. For zonal flows this means that as we must 
increase ζ, resulting in increased cyclonic flow.

• PV contains information about mass and flow fields in one 
variable

h
fPV +

=
ζ



Ertel’s Potential Vorticity
• A more general definition for potential vorticity was 

found by Ertel (1942)
• Ertel used a three-dimensional vector form of the 

equation of motion for frictionless flow, the 
thermodynamic equation for adiabatic motion and 
the mass continuity equation and derived the 
following conservation principle:

where ρ is the density, ζa is the absolute vorticity 
vector, and φ is any conservative thermodynamic 
variable. In meteorology, φ is typically taken to be 
potential temperature
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• Using potential temperature as our thermodynamic variable, we 
then get:

• The conserved quantity                         

is called Ertel’s potential vorticity

• Note: the only assumptions are for frictionless, adiabatic flow
compared to barotropic model assumptions made by Rossby

• Ertel’s theory can be extended to include diabatic and frictional 
effects (see Cotton’s notes for derivation if you are interested)
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• Units of PV: K kg-1 m2 s-1

• In meteorology, the following definition is 
typically used:
– 1 PVU = 10-6 K kg-1 m2 s-1 where PVU stands for 

potential vorticity units
– Values of IPV less than ~1.5 PVU are usually 

associated with tropospheric air
– IPV values larger than 1.5 PVU are usually 

associated with stratospheric air



• Isentropic Potential Vorticity (IPV) is given by:

where ζθ is the vertical component of relative vorticity 
evaluated on an isentropic surface

• Potential vorticity is therefore the product of the absolute 
vorticity and the static stability. If the static stability is 
increased (i.e., if ∂θ/∂p is made more negative), absolute 
vorticity (which is positive) is decreased and vice versa.

• The “potential” in potential vorticity relates to the value 
the relative vorticity would have if a parcel is moved 
adiabatically to a standard latitude and static stability.
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• IPV is defined with a minus sign so that its value is 
normally positive in the Northern Hemisphere

• The expression on the previous slide shows that potential 
vorticity is conserved following the motion in adiabatic, 
frictionless flow

• PV is always in some sense a measure of the ratio of the 
absolute vorticity to the effective depth of the vortex. In 
the expression on the previous slide, the effective depth is 
just the distance between isentropic surfaces measured in 
pressure units (-∂θ/∂p)

• The conservation of PV is a powerful constraint on large-
scale motions of the atmosphere
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A cylindrical column of air moving adiabatically, conserving 
potential vorticity

Ref: Holton



Uses of PV
1. Surface cyclones have been found to be 

accompanied by a positive PV anomaly (high PV 
air relative to the environment) aloft

2. Tracer of stratospheric air
– As PV is a function of static stability, regions with 

strong static stability should also be regions of high 
PV

– The stratosphere has been recognized as a possible 
source region or reservoir of high-PV air – above the 
tropopause θ rapidly increases with height and hence 
so does PV

– PV values larger than 1.5 PVU are usually associated 
with stratospheric air



3. Indicator or troughs and ridges, as well as 
closed lows and highs 

- Tongues of high-IPV(low-IPV), stratospheric 
(tropospheric) air that extend equatorward (poleward) 
from the high-IPV reservoir (low-IPV troposphere) are 
associated with troughs (ridges) in the height field and 
cyclonic (anticyclonic) flow

– Isolated regions of stratospheric IPV that are situated 
equatorward from the reservoir tend to be associated 
with troughs or closed lows in the height field and 
associated cyclonic flow





Ertel’s PV (PVU) evaluated on the 325K surface (left) on (a) 1200 
UTC, May 16, (b) 1200 UTC, May 17, and (c) 1200 UTC, May 18, 
1989. Corresponding 500 mb height contours, temperature and 
dew-point depression (°C). Ref: Bluestein



4. Lee Cyclogenesis

• Westerly Flow
- Suppose that upstream of the mountain barrier flow is 

a uniform zonal flow => ζ=0
- If the flow is adiabatic, each column of air is confined 

between the potential temperature surfaces θ0 and θ0
+δθ as it crosses the mountain

- Potential temperature surface θ0 near the ground 
approximately follows the contours of the ground. A 
potential temperature surface θ0 + δθ several 
kilometers above the ground will also be deflected 
vertically, however, the vertical displacement at 
upper levels is spread horizontally and has less 
displacement in the vertical than that near the ground



- Due to the vertical displacement of the upper-level 
isentropic surfaces there is a vertical stretching of air 
columns upstream of the topographic barrier 
=> causes -∂θ/∂p to decrease
=> ζ must become positive to conserve PV
=> air column turns cyclonically as it approaches the 
topographic barrier
=> the cyclonic curvature causes a poleward drift so 
that f also increases which reduces the change in ζ
required for PV conservation

- As the column begins to cross the barrier its vertical   
extent decreases
=> relative vorticity must then become negative
=> air column will acquire anticyclonic vorticity and 
move southward



- Once the air column has passed over the mountain and 
returned to its original depth it will be south of its 
original latitude so that f will be smaller and the relative 
vorticity must be positive
=> trajectory must have cyclonic curvature
=> column will be deflected poleward
=> when parcel reaches its original latitude it will still 
have a poleward velocity component and will continue 
poleward gradually acquiring anticyclonic curvature 
until its direction is reversed
=> parcel will then move downstream conserving PV 
by following a wave-like trajectory in the horizontal 
plane

- A steady westerly flow over a large-scale mountain 
barrier will therefore result in a cyclonic flow pattern 
immediately to the east of the barrier (called the lee 
side trough) followed by an alternating series of ridges 
and troughs



Schematic view of westerly flow over a topographic barrier: (a) the 
depth of the fluid column as a function of x and (b) the trajectory of a 
parcel in the x,y plane Ref: Holton



• Easterly Flow
– Similar reasoning may be applied to obtain the effects 

of a large topographic barrier on a purely zonal easterly 
flow

– There is a dramatic difference between easterly and 
westerly flow over large-scale topographic barriers

– In the westerly wind case the barrier generates wavelike 
disturbances in the streamlines that extend downwind 
from the barrier

– In the easterly wind case the disturbance in the 
streamlines damps out away from the barrier

– The differences are due to the dependence of the 
Coriolis parameter on latitude



Schematic view of easterly flow over a topographic barrier: (a) the 
depth of the fluid column as a function of x and (b) the trajectory of a 
parcel in the x,y plane Ref: Holton



Midterm Exam: General Notes

• Mid-term exam: Thursday October 16, 12:10 – 2:10
• Includes theory and lab applications, weighted more 

heavily toward theory
• Derivations are fair game although the following 

derivations will NOT be included: virtual temperature, 
enthalpy, vorticity equation, Omega equation, Q vector 
form of the Omega equation, and Petterssen’s equation. 

• You must however understand the final form of the various 
equations, know what basic equations and assumptions are 
used in the derivations, be able to interpret their terms and 
use these equations in explanations of various weather 
phenomena

• Bring colored pencils
• No programmable calculators 



Chapter 2 Outline

• The primary variables
• Instrumentation used to measure the 

primary variables
• Remote sensing

– Electromagnetic spectrum and associated laws
– Instrumentation: satellite, radar, wind profilers



Chapter 3 Outline
• The Gas Laws

– Ideal gas law: general, dry air, water vapor
– Universal Gas constant, gas constant for dry air and water vapor
– Virtual temperature

• Hydrostatic Equation
• Geopotential and geopotential height

– High and low pressure, ridges and troughs
• Thickness

– Thickness / Hypsometric equation
– Warm and cold core systems
– Uses of thickness: frontal location, rain-snow line, warm or cold 

air advection
• First Law of Thermodynamics

– Various forms of the first law
– Joule’s law

• Specific Heats
– At constant volume
– At constant pressure



• Enthaply
• Potential temperature
• Dry Adiabatic Lapse Rate

• Water vapor and moisture parameters:
– Mixing ratio
– Specific humidity
– Saturation vapor pressure with respect to liquid water and ice
– Saturation mixing ratios
– Dew point temperature and frost point temperature
– Lifting condensation level
– Wet bulb temperature

• Saturated Adiabatic Lapse Rate
• Equivalent potential temperature
• Static stability
• Conditional instability
• Convective or potential instability



Chapter 4 Outline
• Coordinate Systems

– Velocity Components
– Pressure as a vertical coordinate
– Other vertical coordinates
– Natural coordinates

• Apparent Forces
– Coriolis Force
– Effective gravity

• Thermal Wind
• Balance Winds

– Geostrophic, gradient, cyclostrophic, friction



• Continuity Equation
– Material derivative form, flux form,
– Incompressibility, convergence, divergence, level of 

nondivergence, vertical motion
– Pressure tendency equation

• Baroclinity and barotropy
• Vorticity

– Components
– Absolute and relative vorticity
– Vorticity equation and interpretation of all terms
– Rotational and shear vorticity

• Omega Equation
• Q vectors
• Petterssen’s Developmental Equation
• Potential Vorticity
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