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ABSTRACT

This paper is concerned with the application of well-known statistical methods (e.g. matched-pairs #-test,
two-sample #-test, one-way analysis of variance and significance test of Pearson’s correlation coefficient) in
the atmospheric sciences. This concern results from the fact that these statistical methods are based on a
complex nonintuitive geometry which does not correspond with the perceived Euclidean geometry of the
data intended to be analyzed. The real and artificial examples of this paper demonstrate how these commonly .
used statistical methods yield conclusions which may contradict rational interpretations by investigators. The
geometric problem underlying these well-known statistical methods is their dependence on a peculiar distance
measure defined between all pairs of measurements (this distance measure does not satisfy the triangle
inequality condition of metric spaces, e.g., the familiar Euclidean space). Alternative statistical methods are

suggested which overcome this geometric problem.

1. Introduction

A primary goal of numerical modeling in the
atmospheric sciences is to describe physical phenom-
ena in a realistic manner. Similarly, it is tacitly
assumed by most atmospheric science investigators
that commonly used statistical tests provide measures
of differences among data sets in a meaningful man-
ner. Unfortunately, many commonly used statistical
methods (e.g. matched-pairs r-test, two-sample -test,
one-way analysis of variance, and significance test of
Pearson’s correlation coefficient) depend on a very
perplexing geometry.

This paper is intended to 1) identify the geometric

. problem underlying these well known statistical
methods and 2) suggest alternative statistical methods
which circumvent this geometric problem. Since both
commonly used and alternative statistical methods
considered. here are embedded in a broader class of
statistical procedures, descriptions of both geometric
concerns and this broader class are given in Section
2. The effect of these geometric concerns on statisti-
cally based conclusions is illustrated in Section 3 with

" both real and artificial examples. Specifically, the real
example of Section 3 involves precipitation data
associated with a weather modification experiment.

Incidentally, the statistical methods considered in
this paper are termed data dependent permutation
procedures. The variability of these procedures is
governed by the assumption that any one of the
possible permutations of the actual data in question
will occur with an equal chance. A test’s ability to
detect different alternatives depends on the test statis-

tic’s structure. In contrast, the variability of a para-
metric test is governed by both the test statistic’s
structure and the distribution (e.g. normal, lognormal,
gamma, kappa, beta or Weibull) assumed to represent
the data in question. The alternative hypothesis of a
parametric test is usually specified by changes attrib-
uted to either a location or scale parameter. Since a
simple analytic description of neither the distribution
nor the alternative associated with the complex dif-
ferential treatment effects on data of a meteorological .
experiment is seldom if ever possible, applications of
parametric tests in the atmospheric sciences must be
severely scrutinized.

2. Preliminaries and geometric concerns

The broader class of statistical procedures which
includes both the commonly used and alternative
statistical techniques is termed multiresponse per-
mutation procedures (MRPP). While a more general
description of. MRPP is given elsewhere (Mielke,
1984), the following description involving univariate
(single response) data satisfies the present purpose.

Let @ = {w, ..., wy} denote a finite population
of N objects, let x; designate a response measurement
associated with object w; (I = 1, ..., N), and let S;,
..., S, be an exhaustive partitioning of the N objects
comprising Q into g disjoint groups. Also, let A;; be
a symmetric distance measure based on the responsé
measurements associated with objects w; and w;. The
MRPP statistic is given by

&
6= Z CI‘E!"

i=1
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where

,
b ) 2 M)

is the average distance measure value for all distinct
pairs of objects in group S; (i =1,...,8), n =2 1is
the number of objects classified a priori (e.g., according
to g treatments) in group $; =1, ..., 9, N

= 2%, m, g=>2, 2%,  is the sum over all 7 and J
such that | < I<J<NC>0(1=,...,g)
Zf;l C; = 1, and ¥, (w;) is 1 if w; belongs to S; and

0 otherwise. _
The null hypothesis for MRPP assigns an equal
probability to each of the

&
M = NY(] nd)

i=]

distinct allocations of the N objects to the g groups.
The collection of all & values associated with these M
equally likely allocations is the permutation distri-
bution of ¢ under the null hypothesis.

If C; = ny/N (i.e. the simple proportion of objects
ingroup S)) fori=1,...,gand A;; = |x; — x| (ie.
ordinary Euclidean distance), then a small value of &
indicates a concentration of response measurements
within the g groups. The purpose of the example
given in Section 2 of Mielke er al. (1981a) is to
provide a very simple description of the concept
underlying MRPP. The P-value associated with an
observed value of & (say &y) is the probability under
the null hypothesis given by P(6 < §;). While an
efficient algorithm to calculate the exact P-value exists
(Berry, 1982), this approach is unreasonable when M
is large (e.g., M > 100 000). Thus a P-value approx-

.imation based on the exact mean, variance and
skewness of 6 under the null hypothesis (u;, 05> and
v, respectively) is used in applications involving large

* values of M (Mielke, 1984). Under the null hypothesis,

the distribution of é usually involves substantial neg-

ative skewness for small, moderate or large values of .

M (Brockwell et al., 1982; Mielke, 1978; Mielke et
al., 1976; Robinson, 1983). To compensate for the
negative skewness, the distribution of the standardized
test StatlStIC glven by

= (0 — uy)/os

is approximated by the Pearson type III distribution
having mean 0, variance 1 and skewness vy = 7v;
(Mielke, 1984; Mielke ef al., 1981a).

The choice of the symmetric distance measure
(A;)) determines the analysis space of MRPP. For
example consider the symmetnc distance measures
given by

Ary = |x; — x)°

where v > 0. Because A;; is a Euclidean distance
when v = 1, the corresponding analysis space of
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MRPP is an ordinary Euclidean space. If v = 2, x,
—4 x2—6andx3—7 thenA12—4 A13—9 A23
= land A, + Ay3 < A5 (ie. the triangle mequahty

condition A, + A3 = A, 3 of a metric space is not
satisfied). Thus the analy51s space corresponding to v
= 2 is a complex nonmetric space. The collection of
observed response measurements (x;, ..., Xy) upon
which any comparisons are made is the data space.

Since the data space (i.e., the visualized collection of
response measurements in question) is perceived as
a Euclidean space, the analysis space of MRPP and
the data space are congruent only when v = 1 (Mielke
and Berry, 1983). It should be noted that a data
space may involve either observed or transformed
response measurements since either set of data is
visualized in a Euclidean space (naturally an observed
or transformed collection of values will differ in their
visualized appearance). If the analysis space of a
statistical technique and the data space are congruent,
then the congruence principle is satisfied. If the con-
gruence principle is not satisfied, then there exists no
basis to expect agreement between visual comparisons
based on displayed data and the analytic comparisons
of a statistical method. The geometric concerns of
this paper involve statistical methods which do not
satisfy the congruence principle. For example, the
permutation version of one-way analysis of variance
(the two-sided two-sample t-test when g = 2) is a
special case of MRPP when C; = (n; — 1)/(N — 2)
and v = 2 (Mielke et al., 1982). Thus the permutation.
version of one-way analysis of variance does not
satisfy the congruence principle. Similar geometric
concerns involving statistical methods such as the
matched-pairs ¢-test and the significance test of Pear-
son’s correlation coefficient are considered elsewhere,
along with alternative statistical methods which satisfy
the congruence principle (Mielke, 1984). The examples
of Section 3 demonstrate that major differences in
conclusions may occur between those statistical
methods which do and those which do not satisfy the
congruence principle.

3. Examples and discussion

The two examiples in this section are intended to
demonstrate that substantial differences may be ob-
tained in the conclusions of statistical methods which
do and do not satisfy the congruence principle. The
first example involves real data of a weather modifi-
cation experiment. The second example involving
artificial data is given to further clarify why contra-
dictory results are achieved by two statistical methods
in the first example.

The first example is based on actual data of the
Climax I and II wintertime orographic cloud seeding
experiments (Mielke et al.,, 1971, 1981b). Let

D=TGM -CM
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denote the difference between target and control
values for each experimental unit. A complete de-
scription of the target group mean (TGM) and the
control mean (designated CM in this paper) are given
in Subsection 3¢ and the Appendix of Mielke et al.
(1981b). Table 1 contains the 109 nonseeded and
108 seeded values of D for the combined Climax I
and II experiments when the estimated 500 mb
temperature over Climax is greater than or equal to
—20°C. The version of MRPP characterized by g
=2, v=2and also C; = (n; — 1)/(N — 2) is the
permutation version of the two-sided two-sample ¢
test and does not satisfy the congruence principle.
The nonseeded versus seeded comparison P-value
using this squared Euclidean distance (v = 2) test is
0.086 for the Table 1 values. In contrast, the version
of MRPP characterized by g = 2, v = 1 and C; = ny/
N is a permutation test which does satisfy the con-
gruence principle. The nonseeded versus seeded com-
parison P-value using this Euclidean distance (v = 1)
test is 0.026 for the Table 1 values.

Thus a major difference in the two P-values occurs
for the Table 1 values. One obvious feature involving
the values of Table 1 is that there exists a very large
value of D (0.709) among the nonseeded values. This
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large value of D is not a questionable value since it
is well within the range of natural variability (i.e.,
infrequent occurrences of such values during a long
sequence of events are expected). While this large
value situation occurred in conjunction with a weather
modification experiment, similar sitvations are not
uncommon in other types of experiments in the
atmospheric sciences and many other disciplines as
well. While a permutation test satisfying the congru-
ence principle is certainly affected by a large value, a
test such as the permutation version of the two-
sample r-test which does not satisfy the congruence
principle is often overwhelmed by a single value (even
when relatively large sample sizes are involved). Thus
the routine practice of selecting a well-known test to
analyze experimental results in advance of an exper-
iment could easily doom the experiment for the
wrong reason (i.e., the choice of a commonly used
test which may be overwhelmed by a very few values).
This concern did not occur with the Climax I and II
experiments simply because of an early decision by
the investigators to use rank tests (Mielke et al.,, 1971,
1981b). Since the largest value is transformed into
the largest rank order value, the effect of such a value
is diminished in the most commonly used rank tests.

TABLE 1. Ordered values of D = TGM — CM for 109 nonseeded and 108 seeded experimental units of the combined Climax I
and 11 experiments when estimated 500 mb temperatures are greater than or equal to —20°C.

Nonseeded cases Seeded cases
—-0.343 -0.019 0.000 0.056 -0.208 0.000 0.000 0.118
-0.282 -0.019 0.000 0.057 —0.112 0.000 0.001 0.125
-0.196 -0.019 0.000 0.064 —0.098 0.000 0.002 0.128
-0.156 -0.015 0.000 0.076 —0.087 0.000 0.008 0.147
-0.139 -0.014 0.000 0.084 —0.080 0.000 0.013 0.168
-0.128 —-0.011 0.000 0.095 -0.079 0.000 0.015 0.169
—0.113 —0.010 0.000 0.097 -0.074 0.000 0.021 0.170
-0.111 -0.010 0.000 0.110 -0.070 0.000 0.024 0.174
—0.108 —0.009 0.000 0.113 —0.066 0.000 0.025 0.183
-0.095 -0.008 0.000 0.126 -0.050 0.000 0.027 0.208
-0.084 -0.007 0.000 0.149 —0.049 0.000 0.033 0.213
—0.068 —0.007 0.000 0.157 -0.029 0.000 0.034 0.226
—0.066 -0.005 0.000 0.182 —-0.026 0.000 0.036 0.234
—0.065 —0.003 0.000 0.186 —-0.026 0.000 0.038 0.251
—0.059 —0.003 0.000 0.224 -0.026 0.000 - 0.043 0.251
—-0.058 -0.001 0.000 0.284 -0.019 0.000 0.047 0.263
-0.051 —-0.001 0.000 0.376 -0.014 0.000 0.050 0.336
—0.049 —0.001 0.000 0.427 -0.013 0.000 0.055 0.351
-0.048 0.000 0.012 0.709 —0.013 0.000 0.056
—0.043 0.000 0.013 -0.009 0.000 0.061
—0.039 0.000 0.021 -0.008 0.000 0.065
—0.034 0.000 0.022 —0.008 0.000 0.065
—0.034 0.000 0.033 -0.004 0.000 0.065
—0.030 0.000 0.034 —0.001 0.000 0.069
-0.030 0.000 0.035 0.000 0.000 0.070
-0.029 0.000 0.039 0.000 0.000 0.077
-0.025 0.000 0.041 0.000 0.000 0.077
-0.025 0.000 0.045 0.000 0.000 0.082
—-0.024 0.000 0.046 0.000 0.000 0.108
-0.023 0.000 0.053 0.000 0.000 0.112
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Since it is impossible to obtain the actual observed _
values from the rank order values, a tremendous
amount of information may be lost by this transfor-
mation. However, if a test statistic satisfies the con-
gruence principle, then the need to transform the
actual observed values into rank order values may be
moot. The next example involves artificial data and
demonstrates that the overwhelming influence of a
single value is dominated by the choice of v and has
little to do with the present choices of C;. The reason
for using C; = (n; — 1)/(N — g) is simply because the
derivation of the one-way analysis of variance statistic
depends on estimates of unknown parameters (a
vacuous reason in the context of permutation tests).
The second example is based on the four artificial
data sets (A, B, C and D) presented in Table 2. Each
of the four data sets in Table 2 involves g = 2, n,
= ny; = 15 and N = 30. Data set A employs two
groups of values, S, and S,, where most of the larger
values among the 30 combined values belong to S;.
Data set B(C) is identical to data set A except that
one value among the 15 values of S(S,) is shifted.
Data set D is identical to data set A except that two
values are shifted, one value from ), and the other
value from S,. The three P-values associated with
each data set in Table 3 are the P-value of MRPP
with v = 1, the P-value of MRPP with v = 2, and
the P-value of the two-sided two-sample t-test (i.e., a
parametric test based on the normal distribution).
Since C; = V- for either n;/N or (n, — 1)/(N —.2), the
choice of C; is eliminated as an issue in this example.
The three P-values associated with data set A are.
essentially the same (i.e. all are very small). While all
P-values associated with data sets B, C and D are
larger, the P-values of MRPP with v = 1 are roughly
two to three orders of magnitude less than the other
two P-values. Since the P-value of MRPP with v = 2
(permutation version of the two-sided two-sample ¢-
test) and the P-value of the two-sided two-sample ¢-
test are about the same for data sets B, C and D, the
enormous P-value differences are dominated by the
geometric issue (i.e., the well known robustness issue

TABLE 2. Ffequencies of S, and S, values for data sets A, B, C
and D where g = 2, N =30 and n; = n; = 15.

Data set
. A "B c D
Value S[ Sz S[ Sz Sl SZ , Sl SZ
16.3 0 0 0 0 0 1 0 1
18.5 1 0 1 0- 1 0 i -0
18.6 4 0 4 0 4 0 4 0
18.7 6 R 5 1 6 1 5 1
18.8 -3 3 3 3 3 2 3 2
18.9 i 4 1 4 1 4 1 4
19.0 0 5 0 5 0 S 0 5
19.1 0 2 0 2 0 2 0 2
19.7 0 0 1 0 0 0 1 0

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 42, No. 12

TABLE 3. Two-sided P-value comparisons based on MRPP with
v = 1, MRPP with v = 2, and the two-sample ¢-test for data sets A,
B, C and D.

MRPP

Data Two-sample
set v=1 v=2 t-test

A 1.8 X 1073 2.8 X 1073 3.1 X 1078
B 2.1 X 1074 0.029 0.042

C 1.0 X 1074 0.95 0.71

D 9.2 X 107 1.00 1.00

concerning differences between the second and third
P-values plays a trivial role). As previously indicated,
a few values being relatively very large and/or very
small are often anticipated with meteorological data
sets (a typical example is the data of Table 1). The
results of Table 3 show that the use of statistical
methods which do not satisfy the congruence principle
will often lead to erroneous statistical conclusions.
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